The relevance of cash flow information in predicting corporate bankruptcy in Italian private companies

Titolo Rivista MANAGEMENT CONTROL
Autori/Curatori Simone Poli, Marco Gatti
Anno di pubblicazione 2024 Fascicolo 2024/1
Lingua Inglese Numero pagine 24 P. 179-202 Dimensione file 304 KB
DOI 10.3280/MACO2024-001009
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

This study investigates the relevance of cash flow information in predicting corpo-rate bankruptcy in Italian private companies. The results indicate that while the cash flow-based model exhibits a high predictive capacity, it is less effective than the accrual-based model. In addition, cash flow-based ratios do not improve the predictive capacity of the accrual-based model. From a theoretical perspective, this study enriches existing literature on the relevance of cash flow information in predicting corporate bankruptcy by extending the investigation to the Italian con-text, which has not yet been sufficiently studied. From a practical standpoint, it provides Italian companies with new bankruptcy prediction models and offers pre-liminary suggestions regarding the relevance that should be attributed to cash flow information within the organizational, administrative, and accounting structures that they must establish to promptly detect crises and undertake appropriate initia-tives in a timely manner to comply with the requirements of the new legislation on business crises.

Keywords:Corporate bankruptcy prediction, Cash flow statement, Cash flow in-formation, Private companies, Italy

  1. Alaka, H.A., Oyedele, L.O., Owolabi, H.A., Kumar, V., Ajayi, S.O., Akinade, O.O., Bilal, M. (2018), Systematic review of bankruptcy prediction models: towards a framework for tool selection, Expert Systems with Applications, 94, pp. 164-184.
  2. Almamy, J., Aston, J., Ngwa, L. N. (2016), An evaluation of Altman's Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: evidence from the UK, Journal of Corporate Finance, 36, pp. 278-285.
  3. Altman, E.I. (1968), Financial ratios discriminant analysis and the prediction of corporate bankruptcy, The Journal of Finance, 23(4), pp. 589-609. DOI: 10.2307/2978933
  4. Altman E. I, Hotchkiss E. (2006), Corporate financial distress and bankruptcy: predict and avoid bankruptcy, analyze and invest in distressed debt, New York, John Wiley & Sons.
  5. Altman, E. I., Sabato, G. (2007), Modelling credit risk for SMEs: evidence from the US market, Abacus, 43(3), pp. 332-357.
  6. Amendola, A., Restaino, M., Sensini, L. (2015), An analysis of the determinants of financial distress in Italy: a competing risks approach, International Review of Economics & Finance, 37, pp. 33-41.
  7. Arcari, A.M. (2018), Preventing crises and managing turnaround processes in SMEs: the role of economic measurement tools, Management Control, 3, pp. 131-155. DOI: 10.3280/MACO2018-003007
  8. Arcuri, G., Levratto, N. (2020), Early stage SME bankruptcy: does the local banking market matter?, Small Business Economics, 54, pp. 421-436.
  9. Balcaen, S., Ooghe, H. (2006), 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems, The British Accounting Review, 38(1), pp. 63-93.
  10. Barontini, R. (2000), La valutazione del rischio di credito: i modelli di previsione delle insolvenze, Bologna, il Mulino.
  11. Bastia, P. (2019), Crisi aziendali e piani di risanamento, Torino, Giappichelli.
  12. Bastia, P. (2022), Gestione della crisi e piani di risanamento aziendali, Milano, Giuffrè.
  13. Beaver, W. H. (1966), Financial ratios as predictors of failure, Journal of accounting research, 4, pp. 71-111. DOI: 10.2307/2490171
  14. Bellovary, J. L., Giacomino D. E., Akers M. D. (2007), A review of bankruptcy prediction studies: 1930 to present, Journal of Financial Education, 33, pp. 1-42.
  15. Bhandari, S.B., Iyer, R. (2013), Predicting business failure using cash flow statement based measures, Managerial Finance, 39(7), pp. 667-676. DOI: 10.1108/03074351311323455
  16. Bhandari, S.B., Showers V., Johnson-Snyder A.J. (2019), A Comparison: Accrual Versus Cash Flow Based Financial Measures’ Performance in Predicting Business Failure, Journal of Accounting & Finance, 19(6), pp. 11-25.
  17. Bisogno, M., De Luca, R. (2015), Financial distress and earnings manipulation: Evidence from Italian SMEs, Journal of Accounting and Finance, 4(1), pp. 42-51.
  18. Branciari, S., Giuliani, M., Poli, S. (2022), L’impatto del settore economico sull’efficacia dei modelli di previsione dell’insolvenza: il caso delle imprese italiane, in Dell’Atti, V., Muserra, A. L., Marasca, S., Lombardi, R. (eds), Dalla crisi allo sviluppo sostenibile. Principi e soluzioni nella prospettiva economico-aziendale, Milano, FrancoAngeli.
  19. Cenciarelli, V. G., Mattei, M. M., Greco, G. (2020), Pressione competitiva e previsione dell’insolvenza, Management Control, 3, pp. 35-58, DOI: 10.3280/MACO2020-003003
  20. Cestari, G. (2009), La diagnosi precoce della crisi aziendale: analisi del processo patologico e modelli predittivi, Milano, Giuffrè.
  21. Cestari, G., Madonna S. (2018), Le performance dei modelli di previsione delle insolvenze in Emilia-Romagna: un’analisi comparata, Rivista Italiana di Ragioneria e di Economia Aziendale, 9(12), pp. 292-311. DOI: 10.17408/RIREASMGCD061011122018
  22. Charitou, J.A., Neophutou E., Charalambous C. (2004), Predicting corporate failure: empirical evidence for the UK, European Accounting Review, 13(3), pp. 465-497. DOI: 10.1080/0963818042000216811
  23. Ciampi, F. (2015), Corporate governance characteristics and default prediction modeling for small enterprises: an empirical analysis of Italian firms, Journal of Business Research, 68(5), pp. 1012-1025.
  24. Ciampi, F. (2017), The need for specific modelling of small enterprise default prediction: empirical evidence from Italian small manufacturing firms, International Journal of Business and Management, 12(12), pp. 251-262.
  25. Ciampi, F. (2018), Using corporate social responsibility orientation characteristics for small enterprise default prediction, WSEAS Transactions on Business and Economics, 15, pp. 113-127.
  26. Ciampi, F., Cillo V., Fiano F. (2020), Combining Kohonen maps and prior payment behavior for small enterprise default prediction, Small Business Economics, 54, pp. 1007-1039.
  27. Ciampi, F., Gordini, G. (2013), Relazione impresa-territorio e modelli predittivi del default d’impresa. Primi risultati di una analisi statistica sulle piccole imprese italiane, Sinergie Italian Journal of Management, 90, pp. 51-76.
  28. Comuzzi, E. (1995), L’analisi degli squilibri finanziari d’impresa, Torino, Giappichelli.
  29. De Andrés Fazio, S., Urquía Grande, E., Pérez Estébanez, R. (2022), The “secret life” of the Statement of Cash Flow: a bibliometric analysis, Management Letters/Cuadernos de Gestión, 22(1), pp. 143-159.
  30. DeLong E.R., DeLong, D.M., Clarke-Pearson D.L. (1988), Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, Biometrics, 44(3), pp. 837-845. DOI: 10.2307/2531595
  31. Dewaelheyns, N., Van Hulle, C. (2004), The impact of business groups on bankruptcy prediction modeling, Tijdschrift voor Economie en Management, 49(4), pp. 623-646.
  32. Du Jardin, P. (2009), Bankruptcy prediction models: How to choose the most relevant variables?, Bankers, Markets & Investors, 98, pp. 39-46.
  33. Edwards, A.L. (1948), Note on the “correction for continuity” in testing the significance of the difference between correlated proportions, Psychometrika, 13(3), pp. 185-187. DOI: 10.1007/BF02289261
  34. Fawzi, N.S., Kamaluddin, A., Sanusi, Z.M. (2015), Monitoring distressed companies through cash flow analysis, Procedia Economics and Finance, 28, pp. 136-144. Doi. 10.1016/S2212-5671(15)01092-8.
  35. Franceschetti, B.M., Koschtial, C. (2013), Do bankrupt companies manipulate earnings more than the non-bankrupt ones?, Journal of Finance and Accountancy, 12, pp. 1-23.
  36. Gabbianelli, L. (2018), A territorial perspective of SME’s default prediction models, Studies in Economics and Finance, 35(4), pp. 542-563. DOI: 10.1108/SEF-08-2016-0207
  37. Giacosa, E., Mazzoleni, A. (2016), La previsione della crisi d’impresa: strumenti e segnali di allerta, Milano, Giuffrè.
  38. Giacosa, E., Mazzoleni, A. (2018), I modelli di previsione dell’insolvenza aziendale: efficacia predittiva, limiti e prospettive di utilizzo, Torino, Giappichelli.
  39. Giunta, F., Pisani, M. (2016), L’analisi di bilancio, Rimini, Maggioli.
  40. Greco, G. (2020), Il rendiconto finanziario, Torino, Giappichelli.
  41. Guatri, L. (1995), Turnaround: declino, crisi e ritorno al valore, Milano, Egea.
  42. Gupta, J., Barzotto, M., Khorasgani, A. (2018), Does size matter in predicting SMEs failure?, International Journal of Finance & Economics, 23(4), pp. 571-605.
  43. Gupta, J., Wilson, N., Gregoriou, A., Healy, J. (2014), The value of operating cash flow in modelling credit risk for SMEs, Applied Financial Economics, 24(9), pp. 649-660. DOI: 10.1080/09603107.2014.896979
  44. Hosmer, Jr. D.W., Lemeshow, S., Sturdivant R.X. (2013), Applied logistic regression, New Jersey, John Wiley & Sons.
  45. Ianni, L., Marullo, G., Migliori, S., De Luca, F. (2021), I modelli predittivi della crisi e dell’insolvenza aziendale: una systematic review, Management Control, 2, pp. 127-146. DOI: 10.3280/MACO2021-002007
  46. Jones, S. (2016), A Cash Flow Based Model of Corporate Bankruptcy in Australia, Journal of Applied Management Accounting Research, 14(1), pp. 23-37.
  47. Kamaluddin, A., Ishak N., Mohammed N.F. (2019), Financial distress prediction through cash flow ratios analysis, International Journal of Financial Research, 10(3), pp. 63-76. DOI: 10.5430/IJFR.V10N3P63.
  48. Karas, M., Režňáková, M. (2020), Cash flows indicators in the prediction of financial distress, Engineering Economics, 31(5), pp. 525-535.
  49. Lee, T.A. (1981), Cash flow accounting and corporate financial reporting, in Bromwich, M., Hopwood, A. (eds), Essays in British accounting research, London, Pitman Publishing Limited.
  50. Lin, W.Y., Hu, Y.H., Tsai C.F. (2011), Machine learning in financial crisis prediction: a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), pp. 421-436. DOI: 10.1109/TSMCC.2011.2170420
  51. Madonna, S., Cestari, G. (2015), The accuracy of bankruptcy prediction models: a comparative analysis of multivariate discriminant models in the Italian context, European Scientific Journal, 11(34), pp. 106-133.
  52. Mazouz, A., Gambrel, P. A. (2013), The impact of cash flow on business failure analysis and prediction, International Journal of Social Sciences and Entrepreneurship, 1(3), pp. 14-29.
  53. McNemar, Q. (1947), Note on the sampling error of the difference between correlated proportions or percentages, Psychometrika, 12(2), pp. 153-157. DOI: 10.1007/BF02295996
  54. Ohlson, J.A. (1980), Financial ratios and the probabilistic prediction of bankruptcy, Journal of accounting research, 18(1), pp. 109-131. DOI: 10.2307/2490395
  55. Özcan, A. (2020), The use of cash flow statement in predicting business failure: evidence from an emerging market, Yönetim Bilimleri Dergisi, 18(36), pp. 373-387. DOI: 10.35408/COMUYBD.633337
  56. Piatti, D. (2012), Il ruolo dei flussi di cassa nella valutazione del merito di credito, Bergamo: Sestante Edizioni-Bergamo University Press.
  57. Piatti, D. (2014), Operating cash flow and creditworthiness assessment, Academy of Accounting and Financial Studies Journal, 18(2), pp. 1-20.
  58. Piatti, D., Cincinelli, P., Castellani, D. (2015), Ruolo dell’efficienza nella previsione del default aziendale, Piccola Impresa/Small Business, 2, pp. 53-84.
  59. Poli, S. (2020), I modelli di previsione della crisi d’impresa: la prospettiva esterna mediante i bilanci in forma abbreviata, Torino, Giappichelli.
  60. Poli, S., Giuliani M., Baccarini L. (2023), Relevance of the legal form of companies for bankruptcy prediction, Piccola Impresa/Small Business, (2).
  61. Pompe, P.P., Bilderbeek, J. (2005), The prediction of bankruptcy of small-and medium-sized industrial firms, Journal of Business venturing, 20(6), pp. 847-868.
  62. Selowidodo, A., Wikansari, R., Sutjiatmo, B.P., Kurniawan M.S., Rachmadi A.T. (2019), The use of earnings and cash flows model in predicting corporate financial distress: evidence from retail merchandizing enterprises listed in IDX, in Abdullah, A. G., Widiaty, I., Abdullah, C. (eds), Global Competitiveness: Business Transformation in the Digital Era, Routledge.
  63. Sharma, D.S. (2001), The role of cash flow information in predicting corporate failure: the state of the literature, Managerial Finance, 27(4), pp. 3-28. DOI: 10.1108/03074350110767114
  64. Situm, M. (2023), Factors affecting micro and small business distress in Austria, International Journal of Entrepreneurial Venturing, 15(1), pp. 19-62. DOI: 10.1504/IJEV.2023.129277
  65. Sun, J., Li H., Huang, Q.H., He, K.Y. (2014), Predicting financial distress and corporate failure: a review from the state-of-the-art definitions, modeling, sampling, and featuring approaches, Knowledge-Based Systems, 57, pp. 41-56.
  66. Supino, E., Piras, N. (2022), Le performance dei modelli di credit scoring in contesti di forte instabilità macroeconomica: il ruolo delle Reti Neurali Artificiali, Management Control, 2, pp. 41-61. DOI: 10.3280/MACO2022-002003
  67. Taffler, R.J., Agarwal, V. (2003), Do statistical failure prediction models work ex ante or only ex post, Deloitte & Touche Lecture Series on credit risk, Antwerp, University of Antwerp.
  68. Teodori, C. (2015), Il rendiconto finanziario: ruolo informativo, analisi, interpretazione e modelli contabili, Torino, Giappichelli.
  69. Teodori, C. (2022), Analisi di bilancio: lettura e interpretazione, Torino, Giappichelli.
  70. Veganzones, D., Severin, E. (2021), Corporate failure prediction models in the twenty-first century: a review, European Business Review, 33(2), pp. 204-226. DOI: 10.1108/EBR-12-2018-0209
  71. Veronica, M.S., Ida, I., Winata, V.T. (2020), Using cash flow ratios to establish a manufacturing bankruptcy prediction model, Jurnal Manajemen Indonesia, 20(2), pp. 114-121.
  72. Wędzki, D. (2012), The sequence of cash flow in bankruptcy prediction: evidence from Poland, Zeszyty Teoretyczne Rachunkowości, 68(124), pp. 161-179.

Simone Poli, Marco Gatti, The relevance of cash flow information in predicting corporate bankruptcy in Italian private companies in "MANAGEMENT CONTROL" 1/2024, pp 179-202, DOI: 10.3280/MACO2024-001009