Mutual Spatial Proximity, Organized Crime, and the Profitability of High-Growth Startups: The Case of Italian Gazelle Enterprises

Titolo Rivista MANAGEMENT CONTROL
Autori/Curatori Carlo Migliardo, Domenico Nicolò
Anno di pubblicazione 2025 Fascicolo 2025/1
Lingua Inglese Numero pagine 23 P. 237-259 Dimensione file 207 KB
DOI 10.3280/MACO2025-001011
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

This study applies a spatial regression model to panel data to investigate the impact of spatial proximity between Italian high-growth startups, termed Gazelles, on their Return on Assets (ROA). The model incorporates a spatially lagged dependent variable to capture the influence of neighboring firms’ performance. Furthermore, we examine the association between perceived crime levels in the provinces where these startups operate and their profitability. Our results show that operating profitability is positively associated with mutual geographic proximity among Gazelles, whereas it is negatively affected by elevated perceptions of local crime. These findings are relevant for entrepreneurs, incubators, and accelerators seeking to identify contextual factors that may enhance or impede firm performance. They also have significant implications for policymakers aiming to design strategies that foster positive externalities and mitigate detrimental externalities in entrepreneurial ecosystems.

Parole chiave:Organized crime; Spatial proximity of enterprises; Performance of high-growth startups; Gazelle enterprises. Startups.

  1. Acs, Z. J., & Mueller, P. (2008). Employment effects of business dynamics: Mice, gazelles and elephants. Small Business Economics, 30, pp. 85-100.
  2. Acs, Z. J., Audretsch, D. B., & Feldman, M. P. (1992). Real effects of academic research: comment. The American Economic Review, 82(1), pp. 363-367.
  3. Albanese, G., Marinelli, G. (2013). Organized crime and productivity: Evidence from firm-level data. Rivista italiana degli economisti, 18, pp. 367-394. DOI: 10.1427/74922
  4. Anselin, L. (2024). An Introduction to Spatial Data Science with GeoDa: Volume 1: Exploring Spatial Data. CRC Press.
  5. Arrow, K. J. (1962). Economic welfare and the allocation of resources for invention. In Nelson, R. R. (Ed.), The Rate and Direction of Inventive Activity. Princeton, NJ: Princeton University Press, pp. 609-26.
  6. Audretsch, D. B. (1995). Innovation and industry evolution. Cambridge, USA: MIT Press
  7. Audretsch, D. B. (2012, March). Determinants of high-growth entrepreneurship. In Report prepared for the OECD/DBA International Workshop on “High-Growth Firms: local policies and local determinants.
  8. Audretsch, D. B., & Dohse, D. (2007). Location: A neglected determinant of firm growth. Review of World Economics/Weltwirtschaftliches Archiv, pp. 79-107.
  9. Audretsch, D. B., Santarelli, E., & Vivarelli, M. (1999). Startup size and industrial dynamics: some evidence from Italian manufacturing. International journal of industrial organization, 17(7), pp. 965-983.
  10. Bathelt, H. (2010). Innovation, learning and knowledge creation in co-localised and distant contexts. In Handbook of local and regional development (pp. 149-161). Routledge.
  11. Baltagi, B. H., Bratberg, E., & Holmås, T. H. (2005). A panel data study of physicians’ labor supply: the case of Norway. Health economics, 14(10), pp. 1035-1045.
  12. Bandiera, O. (2003). Land reform, the market for protection, and the origins of the Sicilian mafia: theory and evidence. Journal of Law, Economics, and Organization, 19(1), pp. 218-244.
  13. Baum, J. R., Locke, E. A., & Smith, K. G. (2001). A multidimensional model of venture growth. Academy of Management Journal, 44, pp- 292-303. DOI: 10.5465/3069456
  14. Barboza, G., & Capocchi, A. (2020). Innovative startups in Italy. Managerial challenges of knowledge spillovers effects on employment generation. Journal of Knowledge Management, 24(10), pp. 2573-2596. DOI: 10.1108/JKM-08-2019-0436
  15. Becattini, G. (2004). Industrial districts: A new approach to industrial change. Edward Elgar Publishing.
  16. Becker, B. E., & Huselid, M. A. (2006). Strategic human resources management: where do we go from here?, Journal of management, 32(6), pp. 898-925. DOI: 10.1177/0149206306293668
  17. Bradley, S. W., Shepherd, D. A., & Wiklund, J. (2011). The importance of slack for new organizations facing ‘tough’ environments. Journal of Management Studies, 48(5), pp. 1071-1097.
  18. Bruna, M. G., & Nicolò, D. (2020). Corporate reputation and social sustainability in the early stages of startups: A theoretical model to match stakeholders’ expectations through corporate social commitment. Finance Research Letters, 35, 101508.
  19. Brush, C. G., Greene, P. G., & Hart, M. M. (2001). From initial idea to unique advantage: The entrepreneurial challenge of constructing a resource base. Academy of Management Perspectives, 15(1), pp. 64-78.
  20. Calamunci, F. M. (2022). What happens in criminal firms after godfather management removal? Judicial administration and firms’ performance. Small Business Economics, 58, pp. 565-591.
  21. Camagni, R. (1993). Inter-firm industrial networks: the costs and benefits of cooperative behaviour. Journal of Industry Studies, 1(1), pp. 1-15. DOI: 10.1080/13662719300000001
  22. Carnes, C. M., Xu, K., Sirmon, D. G., & Karadag, R. (2019). How competitive action mediates the resource slack-performance relationship: A meta-analytic approach. Journal of Management Studies, 56(1), pp. 57-90.
  23. Caseiro, N., & Coelho, A. (2019). The influence of Business Intelligence capacity, network learning and innovativeness on startups performance. Journal of Innovation & Knowledge, 4(3), pp. 139-145.
  24. Cattafi G., Del Pozzo A., & Nicolò D. (2023). People first! Intellectual capital and growth of high-growth social cooperatives (social gazelles) in the startup stage. Evidences from Italy. Small Business Piccola Impresa, 1.
  25. Cattafi, G., Mariani, G., Pistolesi, F., & Nicolò, D. (2024). Cheating in the evaluation. An expedient to estimate the impact of intangibles on the enterprise value of the high-growth startups. Management Control, (3). DOI: 10.3280/MACO2023-003009
  26. Cavallo, A., Ghezzi, A., Colombelli, A., & Casali, G. L. (2020). Agglomeration dynamics of innovative startups in Italy beyond the industrial district era. International Entrepreneurship and Management Journal, 16, pp. 239-262.
  27. Chandler, G. N., & Hanks, S. H. (1994). Market attractiveness, resource-based capabilities, venture strategies, and venture performance. Journal of Business Venturing, 9, pp. 331-349. DOI: 10.1016/0883-9026(94)90011-6
  28. Chircop, J., Fabrizi, M., Malaspina, P., & Parbonetti, A. (2023). Anti-Mafia Police Actions, Criminal Firms, and Peer Firm Tax Avoidance. Journal of Accounting Research, 61(1), pp. 243-277. DOI: 10.1111/1475-679X.12455
  29. Cincimino, S., Gnoffo, S., La Rosa, F., & Paternostro, S. (2024). Entrepreneurship and organised crime: a systematic review and research agenda based on three decades of scholarship. Journal of Small Business and Enterprise Development, (ahead-of-print).
  30. Coad, A., Daunfeldt, S. O., Hölzl, W., Johansson, D., & Nightingale, P. (2014). High-growth firms: introduction to the special section. Industrial and corporate change, 23(1), pp. 91-112.
  31. Colombo, M. G., & Grilli, L. (2005). Founders’ human capital and the growth of new technology-based firms: A competence-based view. Research policy, 34(6), pp. 795-816.
  32. Cooper, A. C., Gimeno-Gascon, F. J., & Woo, C. Y. (1994). Initial human and financial capital as predictors of new venture performance. Journal of business venturing, 9(5), pp. 371-395. DOI: 10.1016/0883-9026(94)90013-2
  33. Crevoisier, O. (2004). The innovative milieus approach: toward a territorialized understanding of the economy?, Economic geography, 80(4), pp. 367-379. -- Stable URL: https://www.jstor.org/stable/30032986.
  34. Daniele, V., & Marani, U. (2011). Organized crime, the quality of local institutions and FDI in Italy: A panel data analysis. European Journal of Political Economy, 27(1), pp. 132-142.
  35. Daunfeldt, S. O., & Halvarsson, D. (2015). Are high-growth firms one-hit wonders? Evidence from Sweden. Small Business Economics, 44, pp. 361-383. DOI 10.1007/s11187-014-9599-8.
  36. Daunfeldt, S. O., Johansson, D., & Halvarsson, D. (2015). Using the Eurostat-OECD definition of high-growth firms: a cautionary note. Journal of Entrepreneurship and Public Policy, 4(1), pp. 50-56. DOI: 10.1108/JEPP-05-2013-0020
  37. Delgado, M., Porter, M. E., & Stern, S. (2010). Clusters and entrepreneurship. Journal of economic geography, 10(4), pp. 495-518.
  38. Detotto, C., & Otranto, E. (2010). Does crime affect economic growth?. Kyklos, 63(3), pp. 330-345.
  39. Di Cataldo, M., & Mastrorocco, N. (2022). Organized crime, captured politicians, and the allocation of public resources. The Journal of Law, Economics, and Organization, 38(3), pp. 774-839.
  40. Eklund, C. M. (2020). Why do some SME’s become high-growth firms? The role of employee competences. Journal of intellectual capital, 21(5), pp. 691-707. DOI: 10.1108/JIC-07-2019-0188
  41. Elhorst, J. P. (2014). Spatial panel models. Handbook of regional science, 3, 705.
  42. Eurostat-OECD (2008), Manual on Business Demography Statistics.
  43. Fallick, B., Fleischman, C. A., & Rebitzer, J. B. (2006). Job-hopping in Silicon Valley: some evidence concerning the microfoundations of a high-technology cluster. The review of economics and statistics, 88(3), pp. 472-481.
  44. Fenizia, A. (2018). Breaking the ties between the Mafia and the State: Evidence from Italian municipalities. Available at SSRN 3105798.
  45. Fitzsimmons, J., Steffens, P., & Douglas, E. (2005). Growth and profitability in small and medium sized Australian firms. Proceedings AGSE Entrepreneurship Exchange, Melbourne.
  46. Forgione, A. F., & Migliardo, C. (2023). Mafia risk perception: Evaluating the effect of organized crime on firm technical efficiency and investment proclivity. Socio-Economic Planning Sciences, 88, 101619.
  47. Forgione, A. F., & Migliardo, C. (2025). The Mafia’s Economic Grip: Firm Efficiency and a Composite Indicator of Organized Crime. Journal of Regional Science.
  48. Fritsch, M. (2013). New business formation and regional development: a survey and assessment of the evidence. Foundations and Trends® in Entrepreneurship, 9(3), pp. 249-364. DOI: 10.1561/0300000043
  49. Gambetta, D. (1993). The sicilian mafia. TLS-The Times Literary Supplement, (4724), pp. 15-15.
  50. Ganau, R., & Rodríguez-Pose, A. (2018). Industrial clusters, organized crime, and productivity growth in Italian SMEs. Journal of Regional Science, 58(2), pp. 363-385.
  51. Garcìa-Ayuso, M., Moreno-Campos, I., & Sierra-Molina, G. (2000). Fundamental Analysis and Human Capital: Empirical Evidence on the Relationship between the Quality of Human Resources and Fundamental Accounting Variables, Journal of Human Resource Costing & Accounting, 5(1), pp. 45-57.
  52. Garnsey, E., & Smith, H. L. (1998). Proximity and complexity in the emergence of high technology industry: the Oxbridge comparison. Geoforum, 29(4), pp. 433-450. DOI: 10.1016/S0016-7185(98)00022-0
  53. George, G. (2005). Slack resources and the performance of privately held firms. Academy of management Journal, 48(4), pp. 661-676.
  54. Gerlach, H., Rønde, T., & Stahl, K. (2009). Labor pooling in R&D intensive industries. Journal of Urban Economics, 65(1), pp. 99-111.
  55. Gilbert, B. A., McDougall, P. P., & Audretsch, D. B. (2006). New venture growth: A review and extension. Journal of management, 32(6), pp. 926-950. DOI: 10.1177/0149206306293860
  56. Gilbert, B. A., McDougall, P. P., & Audretsch, D. B. (2008). Clusters, knowledge spillovers and new venture performance: An empirical examination. Journal of business venturing, 23(4), pp. 405-422.
  57. Harhoff, D. (2000). R&D spillovers, technological proximity, and productivity growth ? evidence from German panel data. Schmalenbach Business Review, 52, pp. 238-260.
  58. Kerr, W. R., & Kominers, S. D. (2015). Agglomerative forces and cluster shapes. Review of Economics and Statistics, 97(4), pp. 877-899.
  59. Kleemans, E. R. (2018). Organized crime and places. In The Oxford handbook of environmental criminology (pp. 868-882). Oxford University Press.
  60. Konrad, K. A., & Skaperdas, S. (2012). The Market for Protection and the Origin of the State. Economic Theory, 50, pp. 417-443.
  61. Krugman, P. (1991). Increasing returns and economic geography. Journal of political economy, 99(3), pp. 483-499. -- Stable URL: https://www.jstor.org/stable/2937739.
  62. Langlois, R. N. (1992). Transaction-cost economics in real time. Industrial and corporate change, 1(1), pp. 99-127.
  63. La Rosa, F., & Bernini, F. (2023). Venture resilience, criminal approaches and the welfare state: entrepreneurial decisions and opinions one year after the COVID-19 outbreak. Journal of Small Business and Enterprise Development, 30(1), pp. 144-166.
  64. La Spina, A., & Lo Forte, G. (2006). I costi dell’illegalità. Rivista economica del Mezzogiorno, 20(3-4), pp. 509-570. DOI: 10.1432/23852
  65. Le Moglie, M., & Sorrenti, G. (2017). Mafia Inc.: When godfathers become entrepreneurs (No. 251). Working Paper.
  66. Lechner, C., & Dowling, M. (2003). Firm networks: external relationships as sources for the growth and competitiveness of entrepreneurial firms. Entrepreneurship & regional development, 15(1), pp. 1-26. DOI: 10.1080/08985620210159220
  67. LeSage, J. P., & Pace, R. K. (2009). Spatial econometric models. In Handbook of applied spatial analysis: Software tools, methods and applications (pp. 355-376). Berlin, Heidelberg: Springer Berlin Heidelberg.
  68. Li, K., Qiu, J., & Wang, J. (2019). Technology conglomeration, strategic alliances, and corporate innovation. Management Science, 65(11), pp. 5065-5090.
  69. Luo, X., Huang, F., Tang, X., & Li, J. (2021). Government subsidies and firm performance: Evidence from high-tech startups in China. Emerging Markets Review, 49, 100756.
  70. Marullo, C., Casprini, E., Di Minin, A., & Piccaluga, A. (2018). ‘Ready for Take-off’: How Open Innovation influences startup success. Creativity and Innovation Management, 27(4), pp. 476-488.
  71. McKelvie, A., Wiklund, J., & Brattström, A. (2018). Externally acquired or internally generated? Knowledge development and perceived environmental dynamism in new venture innovation. Entrepreneurship Theory and Practice, 42(1), pp. 24-46. DOI: 10.1177/1042258717747056
  72. Mirenda, L., Mocetti, S., & Rizzica, L. (2022). The economic effects of mafia: Firm level evidence. American Economic Review, 112(8), pp. 2748-2773.
  73. Nicolò, D., & Valenza, G. (2019). Il dinamismo e la competitività delle imprese italiane: le high-growth enterprises e le gazzelle familiari e non familiari. Rivista economica del Mezzogiorno, 33(3-4), pp. 997-1019. DOI: 10.1432/96266
  74. Nifo, A., & Vecchione, G. (2014). Do institutions play a role in skilled migration? The case of Italy. Regional Studies, 48(10), pp. 1628-1649. DOI: 10.1080/00343404.2013.835799
  75. Porteous, S. D. (1998). Organized crime impact study: Highlights. Solicitor General Canada.
  76. Porter, M. E. (2000). Location, competition, and economic development: Local clusters in a global economy. Economic development quarterly, 14(1), pp. 15-34. DOI: 10.1177/089124240001400105
  77. Pulic, A. (2000). VAIC™ – an accounting tool for IC management. International journal of technology management, 20(5-8), pp. 702-714. DOI: 10.1504/IJTM.2000.002891
  78. Ravenda, D., Giuranno, M. G., Valencia-Silva, M. M., Argiles-Bosch, J. M., & García-Blandón, J. (2020). The effects of mafia infiltration on public procurement performance. European Journal of Political Economy, 64, 101923.
  79. Romer, P. M. (1986). Increasing returns and long-run growth. Journal of political economy, 94(5), pp. 1002-1037. -- Stable URL: http://links.jstor.org/sici?sici=0022-3808%28198610%2994%3A5%3C1002%3AIRALG%3E2.0.CO%3B2-C.
  80. Savona, E. U., Berlusconi, G. (eds.) (2015). Organized Crime Infiltration of Legitimate Businesses in Europe: A Pilot Project in Five European Countries. Final Report of Project ARIEL – Assessing the Risk of the Infiltration of Organized Crime in EU MSs Legitimate Economies: a Pilot Project in 5 EU Countries, Transcrime – Università degli Studi di Trento [-- http://hdl.handle.net/10807/121536].
  81. Saxenian, A. 1994. Regional advantage: Culture and competition in Silicon Valley and Route 128. Cambridge, MA: Harvard University Press.
  82. Steffens, P., Davidsson, P., & Fitzsimmons, J. (2009). Performance configurations over time: implications for growth – and profit – oriented strategies. Entrepreneurship theory and practice, 33(1), pp. 125-148.
  83. Van Praag, C. M., & Versloot, P. H. (2007). What is the value of entrepreneurship? A review of recent research. Small business economics, 29(4), pp. 351-382.
  84. Von Lampe, K. (2016). The ties that bind: A taxonomy of associational criminal structures. In Illegal entrepreneurship, organized crime and social control: Essays in Honor of Professor Dick Hobbs (pp. 19-35). Cham: Springer International Publishing.

Carlo Migliardo, Domenico Nicolò, Mutual Spatial Proximity, Organized Crime, and the Profitability of High-Growth Startups: The Case of Italian Gazelle Enterprises in "MANAGEMENT CONTROL" 1/2025, pp 237-259, DOI: 10.3280/MACO2025-001011