Guiding the Algorithm: Harnessing artificial intelligence to nurture SMEs management control systems

Titolo Rivista MANAGEMENT CONTROL
Autori/Curatori Laura Broccardo, Elisa Ballesio, Daniele Giordino, Elisa Giacosa
Anno di pubblicazione 2025 Fascicolo 2025/1 Suppl.
Lingua Inglese Numero pagine 24 P. 13-36 Dimensione file 153 KB
DOI 10.3280/MACO2025-001-S1002
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

The diffusion of artificial intelligence (AI) amongst organizations is profoundly revolutionizing business processes, such management control (MC) practices. However, the existing literature reveals a significant gap in understanding the contribution of AI-empowered tools to management control systems (MCSs), particularly within small and medium enterprises (SMEs), where these systems are often rudimental, informal, subjective, and short-period-oriented. To address this gap, the authors employed a mixed-methods approach, featuring an open-coding and thematic analysis of AI-generated answers to MC questions related the analysis of liquidity and profitability ratios from 37 Italian SMEs, as well as a qualitative investigation, with in-depth interviews with 15 respondents, to highlight their perceptions. Our investigation is informed by the social construction of technology theory, to explore the relevant social groups, interpretative flexibility, technological frames and patterns of closure related to AI-empowered tools and their contribution to SMEs’ MCSs. We connect our findings to two frames, which highlight, on the one hand the positive contribution of such tools to SMEs’ MCSs through accurate and comprehensive responses; on the other hand, a negative frame highlights concerns related to inconsistency and verbosity of the answers, which may affect trust and usability. This manuscript aims to provide an overview of the possible contribution of AI-empowered tools to SMEs’ MCSs. Both scholars and practitioners can benefit from the theoretical and practical implications provided, which complements the limited number of studies in the field. Future research avenues are discussed.

Parole chiave:Management Control, Artificial Intelligence, SMEs, Small and Medium Enterprises, Social Construction of Technology theory

  1. Agbon G. (2024), Who speaks through the machine? Generative AI as discourse and implications for management, Critical Perspectives on Accounting, 100, 102761.
  2. Albuquerque F., and Gomes dos Santos P. (2024), Can ChatGPT be a certified accountant? Assessing the responses of ChatGPT for the professional access exam in Portugal, Administrative Sciences, 14(7), 152.
  3. Amani F. A., and Fadlalla A. M. (2017), Data mining applications in accounting: A review of the literature and organizing framework, International Journal of Accounting Information Systems, 24, pp. 32-58.
  4. Aryal S., Do T., Heyojoo B., Chataut S., Gurung B. D. S., Gadhamshetty V., and Gnimpieba E. (2024), Leveraging multi-AI agents for cross-domain knowledge discovery, In arXiv [cs.AI]. DOI: 10.48550/ARXIV.2404.08511
  5. Baldwin-Morgan A. A. (1995), Integrating artificial intelligence into the accounting curriculum, Accounting Education, 4(3), pp. 217-229. DOI: 10.1080/09639289500000026
  6. Bankins S., Ocampo A. C., Marrone M., Restubog S. L. D., and Woo S. E. (2024), A multilevel review of artificial intelligence in organizations: Implications for organizational behavior research and practice, Journal of Organizational Behavior, 45(2), pp. 159-182.
  7. Broccardo L., Ballesio E., Crocco E., and Giordino D. (2024), Performance management systems in micro, small, and medium enterprises: Lessons learned from times of uncertainty, Management Control, 3, pp. 15-38.
  8. Broccardo L., Ballesio E., Yaqub M. Z., & Mohapatra A. K. (2025), A bridge to success: the role of management accountants’ intellectual capital in driving organizational decision-making through knowledge management, Journal of Knowledge Management, 29(5), pp. 1365-1411.
  9. Broccardo L., Giacosa E., Culasso F., and Ferraris A. (2017), Management control in Italian SMEs, Global Business and Economics Review, 19(5), 632.
  10. Broccardo L., Tenucci A., Agarwal R., and Alshibani S. M. (2024), Steering digitalization and management control maturity in small and medium enterprises (SMEs), Technological Forecasting and Social Change, 204, 123446.
  11. Burns J., and Scapens R. W. (2000), Conceptualizing management accounting change: an institutional framework, Management Accounting Research, 11(1), pp. 3-25.
  12. Cardoni A., Hiebl M., and Paradisi A. (2023), Management accounting implementation in SMEs: A Structured Literature Review, Management Control, 2, pp. 189-214.
  13. Carnegie G., Parker L., and Tsahuridu E. (2021), It’s 2020: What is accounting today?, Australian Accounting Review, 31(1), pp. 65-73.
  14. Chowdhury E. K. (2023), Integration of artificial intelligence technology in management accounting information system: An empirical study, in International Series in Operations Research and Management Science (pp. 35-46). Springer International Publishing.
  15. Cohen S., Manes Rossi F., and Brusca I. (2023), Debate: Public sector accounting education and artificial intelligence, Public Money and Management, 43(7), pp. 725-726. DOI: 10.1080/09540962.2023.2209290
  16. Cooper L. A., Holderness D. K., Sorensen T. L., and Wood D. A. (2019), Robotic process automation in public accounting, Accounting Horizons, 33(4), pp. 15-35.
  17. Cristiano E. (2020), Intelligenza artificiale, impatto sul sistema aziendale e performance, in Lombardi R., Chiucchi M.S., Mancini D. (Ed.), Smart Technologies, Digitalizzazione e Capitale intellettuale: sinergie e opportunità (pp. 157-175). Milano: FrancoAngeli.
  18. Culasso F., Broccardo L., Giordino D., Crocco E. (2024), Performance management systems and digital technologies: an exploratory analysis of practitioners and academics’ perspectives, Industrial Management & Data Systems, 124(10), pp. 2870-2898. DOI: 10.1108/IMDS-11-2023-0834
  19. Dwivedi Y. K., Kshetri N., Hughes L., Slade E. L., Jeyaraj A., Kar A. K., Baabdullah A. M., Koohang A., Raghavan V., Ahuja M., Albanna H., Albashrawi M. A., Al-Busaidi A. S., Balakrishnan J., Barlette Y., Basu S., Bose I., Brooks L., Buhalis D., … Wright R. (2023), Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy, International Journal of Information Management, 71, 102642.
  20. Elle M., Dammann S., Lentsch J., and Hansen K. (2010), Learning from the social construction of environmental indicators: From the retrospective to the pro-active use of SCOT in technology development, Building and Environment, 45(1), pp. 135-142.
  21. European Commission (2003), Commission Recommendation of 6 May 2003 concerning the definition of micro, small and medium-sized enterprises.
  22. European Commission (2021), The digitalisation of small and medium-sized enterprises in Italy.
  23. Feng Z., Li B., and Liu F. (2024), A first look at financial data analysis using ChatGPT-4o,
  24. Fernandez-Vidal J., Antonio Perotti F., Gonzalez R., and Gasco J. (2022), Managing digital transformation: The view from the top, Journal of Business Research, 152, pp. 29-41.
  25. Garengo P., and Biazzo S. (2012), Unveiling strategy in SMEs through balanced scorecard implementation: a circular methodology, Total Quality Management and Business Excellence, 23, pp. 79-102.
  26. Gioia D. A., Corley K. G., and Hamilton A. L. (2013), Seeking qualitative rigor in inductive research: Notes on the Gioia methodology, Organizational Research Methods, 16(1), pp. 15-31. DOI: 10.1177/1094428112452151
  27. Giordino D, Troise C., Vanhaverbeke W., Culasso F. (2024), Stakeholder engagement processes for the made in Italy small- and medium-sized enterprises: Value co-creation in the stakeholder network, Business Ethics, the Environment & Responsibility, pp. 1-18.
  28. Glaser B. G., and Strauss A. L. (1968), The discovery of grounded theory: Strategies for qualitative research, Social Forces; a Scientific Medium of Social Study and Interpretation, 46(4), 555. DOI: 10.2307/2575405
  29. Grassi L., and Lanfranchi D. (2022), RegTech in public and private sectors: the nexus between data, technology and regulation, Economia e Politica Industriale, 49(3), pp. 441-479.
  30. Guest G., Bunce A., and Johnson L. (2006), How many interviews are enough?: An experiment with data saturation and variability, Field Methods, 18(1), pp. 59-82.
  31. Gupta P., Mahajan R., Badhera U., and Kushwaha P. S. (2024), Integrating generative AI in management education: A mixed-methods study using social construction of technology theory, The International Journal of Management Education, 22(3), 101017.
  32. Humphreys L. (2005), Reframing social groups, closure, and stabilization in the social construction of technology, Social Epistemology, 19(2-3), pp. 231-253. DOI: 10.1080/02691720500145449
  33. Jang M., and Lukasiewicz T. (2023). Consistency Analysis of ChatGPT. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.
  34. Kabir S., Udo-Imeh D. N., Kou B., and Zhang T. (2024), Is stack overflow obsolete? An empirical study of the characteristics of ChatGPT answers to stack overflow questions, Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1-17.
  35. Kaplan R. S. (1984), The evolution of management accounting. Readings in accounting for management control, pp. 586-621.
  36. Kostic N., and Sedej T. (2022), Blockchain technology, inter-organizational relationships, and management accounting: A synthesis and a research agenda, Accounting Horizons, 36(2), pp. 123-141.
  37. Krügel S., Ostermaier A., and Uhl M. (2023), ChatGPT’s inconsistent moral advice influences users’ judgment, Scientific Reports, 13(1), 4569.
  38. Kureljusic M., and Karger E. (2024), Forecasting in financial accounting with artificial intelligence – A systematic literature review and future research agenda, Journal of Applied Accounting Research, 25(1), pp. 81-104.
  39. Lincoln Y. S., and Guba E. G. (1985), Naturalistic Inquiry, SAGE Publications.
  40. Lombardi R., Trequattrini R., Schimperna F., and Cano-Rubio M. (2021), The impact of smart technologies on the Management and strategic control: A structured literature review, Management Control, 1, pp. 11-30.
  41. Losbichler H., and Lehner O. M. (2021), Limits of artificial intelligence in controlling and the ways forward: a call for future accounting research, Journal of Applied Accounting Research, 22(2), pp. 365-382.
  42. Mack N., Woodsong C., and Macqueenm K. M. (2005), Qualitative research methods: A data collector’s field guide Family Health International, Family Health International.
  43. Maelah R., Al Lami M. F. F., and Ghassan G. (2020), Management accounting information usefulness and cloud computing qualities among small medium enterprises, International Journal of Management Studies, 26.
  44. Merjane S., Touili C., Khalil M., Touili K., and Fikri M. (2024), Management control tools for Moroccan industrial companies: Application of Target Costing and Artificial Intelligence, Journal of Autonomous Intelligence, 7(5), 1524.
  45. Naidoo J., and Dulek R. E. (2022), Artificial intelligence in business communication: A snapshot, International Journal of Business Communication, 59(1), pp. 126-147. DOI: 10.1177/2329488418819139
  46. Nik Abdullah N. H., Krishnan S., Mohd Zakaria A. A., and Morris G. (2022), Strategic management accounting practices in business: A systematic review of the literature and future research directions, Cogent Business and Management, 9(1). DOI: 10.1080/23311975.2022.2093488
  47. Nóbrega V., Lopes R., Costa A., Gonçalves R., Dias Á., Pereira L., and Dorner K. (2023), The impact of artificial intelligence in accounting: application in SMEs, International Journal of Electronic Finance, 12(2), 192.
  48. O’Leary D. E. (2023), Digitization, digitalization, and digital transformation in accounting, electronic commerce, and supply chains, Intelligent Systems in Accounting Finance and Management, 30(2), pp. 101-110.
  49. Omrani N., Rejeb N., Maalaoui A., Dabic M., and Kraus S. (2024), Drivers of Digital Transformation in SMEs, IEEE Transactions on Engineering Management, 71, pp. 5030-5043.
  50. Oppioli M., Sousa M. J., Sousa M., and de Nuccio E. (2023), The role of artificial intelligence for management decision: a structured literature review, Management Decision.
  51. Patton M. Q. (2014), Qualitative research and evaluation methods: Integrating theory and practice, Sage publications.
  52. Pelzang R., and Hutchinson A. M. (2017), Establishing cultural integrity in qualitative research: Reflections from a cross-cultural study, International Journal of Qualitative Methods, 17(1).
  53. Perrini F. (2006), SMEs and CSR theory: Evidence and implications from an Italian perspective, Journal of Business Ethics, 67(3), pp. 305-316.
  54. Pinch T., and Bijker W. E. (1987), The Social Construction of Facts and Artifacts: Or How the Sociology of Science and the Sociology of Technology Might Benefit Each Other, MIT Press.
  55. Rikhardsson P., and Yigitbasioglu O. (2018), Business intelligence and analytics in management accounting research: Status and future focus, International Journal of Accounting Information Systems, 29, pp. 37-58.
  56. Roberts J., Baker M., and Andrew J. (2024), Artificial intelligence and qualitative research: The promise and perils of large language model (LLM) ‘assistance’, Critical Perspectives on Accounting, 99, 102722.
  57. Russell S. J., and Norvig P. (2010), Artificial intelligence: A modern approach, Prentice Hall.
  58. Saito K., Wachi A., Wataoka K., and Akimoto Y. (2023), Verbosity bias in preference labeling by Large Language Models, in arXiv [cs.CL]. DOI: 10.48550/ARXIV.2310.10076
  59. Saunders B., Sim J., Kingstone T., Baker S., Waterfield J., Bartlam B., Burroughs H., and Jinks C. (2018), Saturation in qualitative research: exploring its conceptualization and operationalization, Quality and Quantity, 52(4), pp. 1893-1907.
  60. Secinaro S., Calandra D., Lanzalonga F., and Biancone P. (2024), The role of artificial intelligence in management accounting: An exploratory case study, in Digital Transformation in Accounting and Auditing (pp. 207-236), Springer International Publishing.
  61. Simons R. (1991), Strategic orientation and top management attention to control systems, Strategic Management Journal, 12(1), pp. 49-62.
  62. Skare M., de las Mercedes de Obesso M., and Ribeiro-Navarrete S. (2023), Digital transformation and European small and medium enterprises (SMEs): A comparative study using digital economy and society index data, International Journal of Information Management, 68, 102594.
  63. Sovacool B. K., Iskandarova M., and Geels F. W. (2023), “Bigger than government”: Exploring the social construction and contestation of net-zero industrial megaprojects in England, Technological Forecasting and Social Change, 188, 122332.
  64. Strauss A. L., and Corbin J. M. (1998), Basics of qualitative research: Techniques and procedures for developing grounded theory, SAGE Publications.
  65. Sundström A. (2024), AI in management control: Emergent forms, practices, and infrastructures, Critical Perspectives on Accounting, 99, 102701.
  66. Valentinetti D., and Rea M. (2023), Intelligenza artificiale e accounting: le possibili relazioni, Management Control, 2, pp. 93-116.
  67. Valentinetti D., and Rea M. A. (2025), Factors influencing the digitalization of sustainability accounting, reporting and disclosure: a systematic literature review, Meditari Accountancy Research, 33(2), pp. 633-680.
  68. Vasarhelyi M. A., Kogan A., and Tuttle B. M. (2015), Big data in accounting: an overview, Accounting Horizons, 29(2), pp. 381-396.
  69. Verhoef P. C., Broekhuizen T., Bart Y., Bhattacharya A., Qi Dong J., Fabian N., and Haenlein M. (2021), Digital transformation: A multidisciplinary reflection and research agenda, Journal of Business Research, 122, pp. 889-901.
  70. Vlad M., and Vlad S. (2021), The use of machine learning techniques in accounting. A short survey, Journal of Social Sciences, 4(3), pp. 139-143.
  71. Wei R., and Pardo C. (2022), Artificial intelligence and SMEs: How can B2B SMEs leverage AI platforms to integrate AI technologies?, Industrial Marketing Management, 107, pp. 466-483.
  72. Xiong H. (2024), Research on confusing responses based on ChatGPT, Applied and Computational Engineering, 57(1), pp. 90-97. DOI. 10.54254/2755-2721/57/20241315.

Laura Broccardo, Elisa Ballesio, Daniele Giordino, Elisa Giacosa, Guiding the Algorithm: Harnessing artificial intelligence to nurture SMEs management control systems in "MANAGEMENT CONTROL" 1 Suppl./2025, pp 13-36, DOI: 10.3280/MACO2025-001-S1002