Using emotional text mining to assess the culture of blood donation in Italy

Titolo Rivista PSICOLOGIA DELLA SALUTE
Autori/Curatori Silvia Monaco, Martina Doneda, Ettore Lanzarone, Rachele Mariani
Anno di pubblicazione 2023 Fascicolo 2023/2
Lingua Inglese Numero pagine 23 P. 44-66 Dimensione file 320 KB
DOI 10.3280/PDS2023-002004
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

This paper presents an application of Emotional Text Mining (ETM) to blood donation culture. We collected all the articles from two important Italian newspapers published from January 2016 to March 2021, regarding blood donation. The ETM analysis of the collected corpus identified a great variety of keywords characterizing the Italian culture of blood dona-tion, organized in 7 clusters and positioned in a 6-dimensional factorial space, that allowed us to formulate a series of considerations regarding: the dimension of emergency and related de-fense mechanisms, the issues brought by COVID-19, the cultural importance of the organizational dimension, the perceived role of the common citizen, and the role of volunteering in healthcare. The results obtained via ETM can be used to better understand culture-specific blood donation representations, and to consequently act on donor motivation in a more fo-cused way. The approach is of general validity and can be applied to other national contexts.

Questo lavoro presenta un’applicazione di Emotional Text Mining (ETM) al contesto della donazione di sangue. Abbiamo raccolto tutti gli articoli, pubblicati da Gennaio 2016 a Marzo 2021, dei due più importanti quotidiani italiani trattanti il tema della donazione di sangue. L’analisi ETM del corpus così raccolto ha identificato una grande varietà di parole chiave che caratterizzano la cultura italiana della donazione del sangue, organizzata in 7 cluster posizionati in uno spazio fattoriale 6-dimensionale, che ci ha consentito di formulare una serie di conside-razioni concernenti: la dimensione dell’emergenza e i relativi meccanismi di difesa, le proble-matiche portate dalla pandemia di COVID-19, l’importanza culturale della dimensione orga-nizzativa del sistema, e, infine, il ruolo percepito del cittadino comune e quello delle organizza-zioni di volontariato in sanità. I risultati ottenuti con l’analisi ETM possono essere utilizzati per meglio comprendere le rappresentazioni della donazione di sangue specifiche del contesto analizzato, e conseguentemente agire sul coinvolgimento dei donatori in maniera più focalizzata. L’approccio ha una validità generale e può essere utilizzato in altri contesti nazionali.

Keywords:analisi del testo, asset culturali, comunicazione, donazione del sangue, Emotio-nal Text Mining.

  1. Adeleye O. A., Aldoory L. & Parakoyi D. B. (2011). Using local culture and gender roles to improve male involvement in maternal health in Southern Nigeria. Journal of Health Communication, 16(10), 1122-1135. DOI: 10.1080/10810730.2011.57134
  2. Airhihenbuwa C. O. (1989). Perspectives on AIDS in Africa: strategies for prevention and control. AIDS education and prevention: official publication of the International Society for AIDS Education, 1(1), 57-69.
  3. Bani M. & Strepparava M. G. (2011). Motivation in Italian whole blood donors and the role of commitment. Psychology, Health and Medicine, 16, 641-649. DOI: 10.1080/13548506.2011.569731
  4. Carli R. (1990). Il processo di collusione nelle rappresentazioni sociali. Rivista di Psicologia Clinica, 4, 282-296.
  5. Chen N. N. T., Moran M. B., Frank L. B., Ball-Rokeach S. J. & Murphy S. T. (2018). Understanding cervical cancer screening among Latinas through the lens of structure, culture, psychology and communication. Journal of Health Communication, 23(7), 661-669, DOI: 10.1080/10810730.2018.1500661
  6. Copeman J. (2009). Introduction: blood donation, bioeconomy, culture. Body & Society, 15, 1-28. DOI: 10.1177/1357034X09103435
  7. Cordella B., Greco F. & Raso A. (2014). Lavorare con corpus di piccole dimensioni in psicologia clinica: una proposta per la preparazione e l’analisi dei dati. In Née E., Daube M., Valette M. & Fleury S., eds., Actes JADT 2014. 12es Journées internationales d’Analyse Statistique des Données Textuelles (pp. 173-184). Lexicometrica.
  8. Cordella B., Greco F., Carlini K., Greco A. & Tambelli R. (2018). Infertility and assisted reproduction: Legislative and cultural evolution in Italy. Rassegna di psicologia, 35(3), 45-56.
  9. De Angelis V. (2021). Keep the heart of the World Blood Donor Day beating: a challenge in times of COVID-19. Blood transfusion, 19(4), 269-271. DOI: 10.2450/2021.0192-21
  10. Doneda M., Yalçındağ S., Marques I. & Lanzarone E. (2021). A discrete-event simulation model for analysing and improving operations in a blood donation centre. Vox sanguinis, 116(10), 1060-1075.
  11. Duh H. I. & Dabula N. (2021). Millennials’ socio-psychology and blood donation intention developed from social media communications: A survey of university students. Telematics and Informatics, 58, 101534.
  12. Fornari F. (1976). Simbolo e codice: Dal processo psicoanalitico all’analisi istituzionale. Milano: Feltrinelli.
  13. Greco F., Alaimo L. & Celardo L. (2018). Brexit and Twitter: The voice of people. In Iezzi D.F., Celardo L., Misuraca M., eds., JADT’ 18, Proceedings of the 14th International Conference on statistical analysis of textual data, Rome, 12-15 June, 2018 (pp. 327-334). Roma: Universitalia.
  14. Greco F. (2016). Integrare la disabilità: Una metodologia interdisciplinare per leggere il cambiamento culturale. Milano: Franco Angeli.
  15. Greco F., Celardo L. & Alaimo L. M. (2018). Brexit in Italy: Text Mining of Social Media, in A. Abbruzzo, D. Piacentino, M. Chiodi, and E. Brentari, eds., Book of short Papers SIS 2018 (pp. 767-772). Milano: Pearson.
  16. Greco F. & Polli A. (2020). Emotional Text Mining: Customer profiling in brand management. International Journal of Information Management, 51, 101934.
  17. Güre S. B., Carello G., Lanzarone E. & Yalçındağ S. (2018). An appointment scheduling framework to balance the production of blood units from donation. European Journal of Operational Research, 265, 1124-1143.
  18. Iezzi D. F., Mayaffre D. & Misuraca M. (2020). Text analytics: Advances and challenges. New York, USA: Springer International Publishing.
  19. Ipsos (2018). Global views on healthcare in 2018. Avaible on: https://www.ipsos.com/en-uk/global-views-healthcare-2018 [Accessed on 08/03/2023].
  20. Lancia F. (2004). Strumenti per l’analisi dei testi. Introduzione all’uso di T-Lab. Milano: Franco Angeli.
  21. Lanzarone E. & Yalçındağ S. (2019). Uncertainty factors in the blood donation appointment scheduling: bottlenecks and research perspectives. In Cappanera, P., Li J., Matta A., Sahin E., Vandaele N. J., Visintin F., eds., Health Care Systems Engineering (pp. 293-304). New York, USA: Springer.
  22. Laricchiuta D., Greco F., Piras F., Cordella B., Cutuli D., Picerni E. & Petrosini L. (2018). The grief that doesn’t speak”: Text mining and brain structure. JADT, 18, 419-427.
  23. Lebart L., Salem A. & Berry L. (1998). Exploring textual data, vol. 4. New York, USA: Springer Science & Business Media.
  24. Lownik E., Riley E., Konstenius T., Riley W. & McCullough J. (2012). Knowledge, attitudes and practices surveys of blood donation in developing countries. Vox Sanguinis, 103, 64-74.
  25. Tang L. & Peng W. (2015). Culture and health reporting: a comparative content analysis of newspapers in the United States and China. Journal of Health Communication, 20(2), 187-195. DOI: 10.1080/10810730.2014.920060
  26. Lynch R. & Cohn S. (2018). Donor understandings of blood and the body in relation to more frequent donation. Vox sanguinis, 113, 350-356.
  27. Masser B. M., White K. M., Hyde M. K. & Terry D. J. (2008). The psychology of blood donation: current research and future directions. Transfusion medicine reviews, 22, 215-233.
  28. Matte Blanco, I. (1975). The unconscious as infinite sets: An essay in bi-logic. Duckworth.
  29. McCullough T. K. & McCullough J. (2013). Strengthening blood programs in developing countries. Transfusion and Apheresis Science, 49, 408-415.
  30. McKeever T., Sweeney M. R. & Staines A. (2006). An investigation of the impact of prolonged waiting times on blood donors in Ireland. Vox Sanguinis, 90, 113-118.
  31. Miah M. (2020). Study of blood donation campaign communication methods and attributes of donors: A data analytics approach. International Journal of Healthcare Management, 265(3), 1124-1143. DOI: 10.1080/20479700.2020.183672
  32. Ministero della Salute (2021). Nel 2020 garantita in Italia l’autosufficienza per il sangue, ma calano i donatori. Accessed on 27th of July 2021. -- Available from: http://www.donailsangue.salute.gov.it/donaresangue/dettaglioNotizieCns.jsp?lingua=italiano&area=cns&menu=newsMedia&sottomenu=news&id=53
  33. Monaco S., Di Trani M., Cordella B. & Greco F. (2021). Organ donation: a study of its representations among organ procurement coordinators and their staff. Psicologia della Salute, 3, 125-142. DOI: 10.3280/PDS2021-00301
  34. Moscovici S. (2006). Le rappresentazioni sociali. Bologna: il Mulino.
  35. Rasmus K. N. & Kim C. S. (2014). The relative importance of social media for accessing, finding, and engaging with news. Digital Journalism, 2(4), 472-489. DOI: 10.1080/21670811.2013.87242
  36. Salton G. (1989). Automatic text processing: the transformation, analysis, and retrieval of Information by Computer, Massachussets: Addison-Wesley.
  37. Salvatore S. & Freda M. F. (2011). Affect, unconscious and sensemaking: A psychodynamic. semiotic and dialogic model. New Ideas in Psychology, 29(2), 119-135.
  38. Savaresi S. M. & Boley D. L. (2004). A comparative analysis on the bisecting k-means and the PDDP clustering algorithms. Intelligent Data Analysis, 8, 345-362. DOI: 10.3233/IDA-2004-840
  39. Spahn D. R. & Goodnough L. T. (2013). Alternatives to blood transfusion. The Lancet, 381, 1855-1865. DOI: 10.1016/S0140-6736(13)60808-
  40. Statista (2020). Leading daily newspapers in Italy as of December 2020, by number of copies sold. Accessed on 11th of August 2021. Available from: https://www.statista.com/statistics/729663/top-daily-newspapers-italy/
  41. Tan N. Q. P. & Cho H. (2019). Cultural appropriateness in health communication: A review and a revised framework. Journal of Health Communication, 24(5), 492-502. DOI: 10.1080/10810730.2019.162038
  42. Zeller M. P., Ellingham D., Devine D., Lozano M., Lewis P., Zhiburt E., van der Linde L., Goldman M., Nakamura A., Inoue S., Takikawa M., Nakajima K., Turek P., Řeháček V., Sakashita A. M., Kutner J. M., Karim F. A., Hindawi S., Jayasekara S., Merz E. M., … Chuhriiev A. (2020). Vox Sanguinis International Forum on Donor Incentives: Summary. Vox sanguinis, 115(4), 339-344.

Silvia Monaco, Martina Doneda, Ettore Lanzarone, Rachele Mariani, Using emotional text mining to assess the culture of blood donation in Italy in "PSICOLOGIA DELLA SALUTE" 2/2023, pp 44-66, DOI: 10.3280/PDS2023-002004