Neurofisiologia, interazioni neuro-immunitarie e meccanobiologia nell’osteopatia craniale. Una prospettiva basata sull’evidenza per un razionale scientifico

Titolo Rivista PNEI REVIEW
Autori/Curatori Alessandro Casini, Nicola Barsotti, Marco Chiera, Christian Lunghi, Mauro Fornari, Diego Lanaro
Anno di pubblicazione 2024 Fascicolo 2024/1
Lingua Italiano Numero pagine 14 P. 68-81 Dimensione file 1137 KB
DOI 10.3280/PNEI2024-001006
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

L’osteopatia craniale (OCF) rappresenta un approccio distintivo caratteristico dell’osteopatia, concentrato sulla manipolazione manuale della regione cranica. Tuttavia, la validità scienti?ca dell’OCF viene messa in discussione in quanto associata a modelli obsoleti. Questo perspective paper esamina in modo critico le conoscenze attuali in neuro?siologia e meccanobiologia per presentare un razionale per l’OCF basato sulle evidenze scienti?che. I risultati principali si focalizzano sulla stimolazione tattile dei recettori esocranici, sugli effetti di tale stimolazione a livello endocranico e sistemico e sulle implicazioni nella gestione delle sindromi algiche-disfunzionali cranio-facciali tramite l’OCF. Proponendo un razionale per l’OCF basato sulle evidenze, questa ricerca mira a indirizzare i futuri studi nell’ambito dell’OCF e a contribuire all’instaurarsi di un approccio terapeutico più centrato sulle necessità del paziente ed ef?cace per la salute e il benessere.;

Keywords:Osteopatia craniale, Terapia manuale, Tocco, Meccanotrasduzione, Nervo trigemino, Suture craniche.

  1. McGlone F., Wessberg J., & Olausson H. (2014). Discriminative and affective touch: sensing and feeling. Neuron, 82(4), 737–755.
  2. Abenavoli A., Badi F., Barbieri M., Bianchi M., Biglione G., Dealessi C., Grandini M., Lavazza C., Mapelli L., Milano V., Monti L., Seppia S., Tresoldi M., & Maggiani A. (2020). Cranial osteopathic treatment and stress-related effects on autonomic nervous system measured by salivary markers: A pilot study. Journal of Bodywork and Movement Therapies, 24(4), 215–221.
  3. Balcziak L.K., & Russo A.F. (2022). Dural Immune Cells, CGRP, and Migraine. Frontiers in Neurology, 13, 874193.
  4. Baroni F., Tramontano M., Barsotti N., Chiera M., Lanaro D., & Lunghi C. (2021). Osteopathic structure/function models renovation for a person-centered approach: a narrative review and integrative hypothesis. Journal of Complementary and Integrative Medicine, 20(2), 293–301.
  5. Benatto M.T., Florencio L.L., Carvalho G.F., Dach F., Bigal M.E., Chaves T.C., & Bevilaqua-Grossi D. (2017). Cutaneous allodynia is more frequent in chronic migraine, and its presence and severity seems to be more associated with the duration of the disease. Arquivos de Neuro-Psiquiatria, 75(3), 153–159. DOI: 10.1590/0004
  6. McGlone F., Cerritelli F., Walker S., & Esteves J. (2017). The role of gentle touch in perinatal osteopathic manual therapy. Neuroscience & Biobehavioral Reviews, 72, 1–9.
  7. Cerritelli F., Chiacchiaretta P., Gambi F., Perrucci M.G., Barassi G., Visciano C., Bellomo R.G., Saggini R., & Ferretti A. (2020). Effect of manual approaches with osteopathic modality on brain correlates of interoception: an fMRI study. Scientific Reports, 10(1), 3214.
  8. Cerritelli F., Ginevri L., Messi G., Caprari E., Di Vincenzo M., Renzetti C., Cozzolino V., Barlafante G., Foschi N., & Provinciali L. (2015). Clinical effectiveness of osteopathic treatment in chronic migraine: 3-Armed randomized controlled trial. Complementary Therapies in Medicine, 23(2), 149–156.
  9. Corniani G., & Saal H.P. (2020). Tactile innervation densities across the whole body. Journal of Neurophysiology, 124(4), 1229–1240.
  10. D’Alessandro G., Cerritelli F., & Cortelli P. (2016). Sensitization and Interoception as Key Neurological Concepts in Osteopathy and Other Manual Medicines. Frontiers in Neuroscience, 10, 100.
  11. Degenhardt B.F., Darmani N.A., Johnson J.C., Towns L.C., Rhodes D.C.J., Trinh C., McClanahan B., & DiMarzo V. (2007). Role of osteopathic manipulative treatment in altering pain biomarkers: a pilot study. The Journal of the American Osteopathic Association, 107(9), 387–400.
  12. DeGiorgio C.M., Soss J., Cook I.A., Markovic D., Gornbein J., Murray D., Oviedo S., Gordon S., Corralle-Leyva G., Kealey C.P., & Heck C.N. (2013). Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology, 80(9), 786–791.
  13. Dubin A.E., & Patapoutian A. (2010). Nociceptors: the sensors of the pain pathway. Journal of Clinical Investigation, 120(11), 3760–3772. DOI: 10.1172/JCI4284
  14. Gabutti M., & Draper-Rodi J. (2014). Osteopathic decapitation: Why do we consider the head differently from the rest of the body? New perspectives for an evidenceinformed osteopathic approach to the head. International Journal of Osteopathic Medicine, 17(4), 256–262.
  15. Ginatempo F., De Carli F., Todesco S., Mercante B., Sechi G.P., & Deriu F. (2018). Effects of acute trigeminal nerve stimulation on rest EEG activity in healthy adults. Experimental Brain Research, 236(11), 2839–2845.
  16. Goadsby P.J., Knight Y.E., Hoskin K.L., & Butler P. (1997). Stimulation of an intracranial trigeminally-innervated structure selectively increases cerebral blood flow. Brain Research, 751(2), 247–252.
  17. Iyengar S., Johnson K.W., Ossipov M.H., & Aurora S.K. (2019). CGRP and the Trigeminal System in Migraine. Headache: The Journal of Head and Face Pain, 59(5), 659–681.
  18. Jara Silva C.E., Joseph A.M., Khatib M., Knafo J., Karas M., Krupa K., Rivera B., Macia A., Madhu B., McMillan M., Burtch J., Quinonez J., Albert T., & Khanna D. (2022). Osteopathic Manipulative Treatment and the Management of Headaches: A Scoping Review. Cureus, 14, e27830.
  19. Katanosaka K., Takatsu S., Mizumura K., Naruse K., & Katanosaka Y. (2018). TRPV2 is required for mechanical nociception and the stretch-evoked response of primary sensory neurons. Scientific Reports, 8(1), 16782.
  20. Klein A.H., Trannyguen M., Joe C.L., Iodi Carstens M., & Carstens E. (2015). Thermosensitive Transient Receptor Potential (TRP) Channel Agonists and Their Role in Mechanical, Thermal and Nociceptive Sensations as Assessed Using Animal Models. Chemosensory Perception, 8(2), 96–108.
  21. 015-9176-9
  22. Kosaras B., Jakubowski M., Kainz V., & Burstein R. (2009). Sensory innervation of the calvarial bones of the mouse. The Journal of Comparative Neurology, 515, 331–348.
  23. Macfarlane R., & Moskowitz M.A. (1995). The Innervation of Pial Blood Vessels and their Role in Cerebrovascular Regulation. In: Caplan L.R. (Ed.), Brain Ischemia. London: Springer London (pp. 247–259).
  24. Mercante B., Enrico P., Floris G., Quartu M., Boi M., Serra M.P., Follesa P., & Deriu F. (2017). Trigeminal nerve stimulation induces Fos immunoreactivity in selected brain regions, increases hippocampal cell proliferation and reduces seizure severity in rats. Neuroscience, 361, 69–80.
  25. Mulcahy J., & Vaughan B. (2014). Sensations Experienced and Patients’Perceptions of Osteopathy in the Cranial Field Treatment. Journal of Evidence-Based Complementary & Alternative Medicine, 19(4), 235–246. DOI: 10.1177/2156587214534263
  26. Noseda R., Melo-Carrillo A., Nir R.-R., Strassman A.M., & Burstein R. (2019). Non-Trigeminal Nociceptive Innervation of the Posterior Dura: Implications to Occipital Headache. The Journal of Neuroscience, 39(10), 1867–1880. https://doi. org/10.1523/JNEUROSCI.2153-18.2018
  27. Olesen J., Burstein R., Ashina M., & Tfelt-Hansen P. (2009). Origin of pain in migraine: evidence for peripheral sensitisation. The Lancet Neurology, 8(7), 679–690. DOI: 10.1016/S1474-4422(09)70090-
  28. Panneton W.M., & Gan Q. (2020). The Mammalian Diving Response: Inroads to Its Neural Control. Frontiers in Neuroscience, 14, 524.
  29. Pietrobon D., & Moskowitz M.A. (2013). Pathophysiology of Migraine. Annual Review of Physiology, 75(1), 365–391.
  30. Piovesan E., Kowacs P., Tatsui C., Lange M., Ribas L., & Werneck L. (2001). Referred Pain After Painful Stimulation of the Greater Occipital Nerve in Humans: Evidence of Convergence of Cervical Afferences on Trigeminal Nuclei. Cephalalgia, 21(2), 107–109.
  31. Pulous F.E., Cruz-Hernández J.C., Yang C., Kaya Ζ., Paccalet A., Wojtkiewicz G., Capen D., Brown D., Wu J.W., Schloss M.J., Vinegoni C., Richter D., Yamazoe M., Hulsmans M., Momin N., Grune J., Rohde D., McAlpine C.S., Panizzi P., Weissleder R., Kim D.-E., Swirski F.K., Lin C.P., Moskowitz M.A., & Nahrendorf M. (2022). Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nature Neuroscience, 25(5), 567–576.
  32. Roudaut Y., Lonigro A., Coste B., Hao J., Delmas P., & Crest M. (2012). Touch sense: Functional organization and molecular determinants of mechanosensitive receptors. Channels, 6(4), 234–245.
  33. Schoenen J., Vandersmissen B., Jeangette S., Herroelen L., Vandenheede M., Gerard P., & Magis D. (2013). Migraine prevention with a supraorbital transcutaneous stimulator: A randomized controlled trial. Neurology, 80(8), 697–704.
  34. Schueler M., Messlinger K., Dux M., Neuhuber W.L., & De R. (2013). Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain, 154(9), 1622–1631.
  35. Schueler M., Neuhuber W.L., De Col R., & Messlinger K. (2014). Innervation of Rat and Human Dura Mater and Pericranial Tissues in the Parieto-Temporal Region by Meningeal Afferents. Headache: The Journal of Head and Face Pain, 54(6), 996–1009.
  36. Shiozawa P., Da Silva M.E., Netto G.T.M., Taiar I., & Cordeiro Q. (2015). Effect of a 10day trigeminal nerve stimulation (TNS) protocol for treating major depressive disorder: A phase II, sham-controlled, randomized clinical trial. Epilepsy & Behavior, 44, 23–26. https://doi. org/10.1016/j.yebeh.2014.12.024
  37. Smith R., Thayer J.F., Khalsa S.S., & Lane R.D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 75, 274–296.
  38. Stovner L.J., Hagen K., Tronvik E., Bruvik Gravdahl G., Burstein R., & Dodick D.W. (2022). FollowTheSutures: Piloting a new way to administer onabotulinumtoxinA for chronic migraine. Cephalalgia, 42(7), 590–597. DOI: 10.1177/0333102421106777
  39. Terrier L., Hadjikhani N., Velut S., Magnain C., Amelot A., Bernard F., Zöllei L., & Destrieux C. (2021). The trigeminal system: The meningovascular complex— A review. Journal of Anatomy, 239(1), 1–11.
  40. Terrier L.-M., Hadjikhani N., & Destrieux C. (2022). The trigeminal pathways. Journal of Neurology, 269(7), 3443–3460.
  41. Tramontano M., Cerritelli F., Piras F., Spanò B., Tamburella F., Piras F., Caltagirone C., & Gili T. (2020). Brain Connectivity Changes after Osteopathic Manipulative Treatment: A Randomized Manual Placebo-Controlled Trial. Brain Sciences, 10(12), 969.
  42. White T.G., Powell K., Shah K.A., Woo H.H., Narayan R.K., & Li C. (2021). Trigeminal Nerve Control of Cerebral Blood Flow: A Brief Review. Frontiers in Neuroscience, 15, 649910.
  43. Woo S.-H., Ranade S., Weyer A.D., Dubin A.E., Baba Y., Qiu Z., Petrus M., Miyamoto T., Reddy K., Lumpkin E.A., Stucky C.L., & Patapoutian A. (2014). Piezo2 is required for Merkel-cell mechanotransduction. Nature, 509(7502), 622–626.

Alessandro Casini, Nicola Barsotti, Marco Chiera, Christian Lunghi, Mauro Fornari, Diego Lanaro, Neurofisiologia, interazioni neuro-immunitarie e meccanobiologia nell’osteopatia craniale. Una prospettiva basata sull’evidenza per un razionale scientifico in "PNEI REVIEW" 1/2024, pp 68-81, DOI: 10.3280/PNEI2024-001006