Innovative sustainable strategies in agro-food systems and in buildings for energy efficiency

Titolo Rivista RIVISTA DI STUDI SULLA SOSTENIBILITA'
Autori/Curatori Carlo Alberto Campiotti, Carlo Bibbiani, Alberto Campiotti, Evelia Schettini, Corinna Viola, Giuliano Vox
Anno di pubblicazione 2017 Fascicolo 2016/2
Lingua Inglese Numero pagine 18 P. 79-96 Dimensione file 636 KB
DOI 10.3280/RISS2016-002008
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

EU identified the energy efficiency policy as the major strategy for ensuring both the sustainability of the use of energy resources and to develop the transition towards a low-carbon and decentralized energy system in Europe. This paper presents a brief analysis on available innovative technologies to reduce the dependency of agriculture and agro-food sector from fossil energy, and comply with the international commitment to reduce greenhouse emissions and to combat climate change. A general overview is provided on the energy consumption in agriculture and agro-food sector, with particular focus on the Italian sector is taken into consideration. It is discussed the role of solid biomass in place of fossil resources and the application of solar cooling technology as new technologies for acclimatization in greenhouse agriculture. Moreover, the application of living vegetated horizontal and vertical layers on buildings is evaluated as innovative and natural technology for improving the sustainability of towns and reducing the energy consumption for air conditioning in summer and CO2 emissions in towns.

L’efficienza energetica rappresenta la policy europea di maggiore interesse per favorire la riduzione dei consumi energetici nei diversi settori produttivi e la riduzione delle emissioni di CO2. In particolare, questo lavoro è focalizzato sul settore agricoltura e industria alimentare nazionale di cui riporta un quadro generale in termini di consumi energetici delle diverse filiere produttive; inoltre il lavoro brevemente affronta le innovazioni disponibili per migliorare l’efficienza energetica ai fini della diminuzione dei consumi di energia fossile nella produzione di beni alimentari. Vengono descritte le caratteristiche tecniche relative all’impiego della biomassa solida e alla tecnologia solar cooling per la climatizzazione nel comparto dei sistemi serra. Inoltre, viene presa in considerazione la tecnologia dei tetti verdi e delle pareti vegetali per sostenere il miglioramento dell’efficienza energetica degli edifici e la diminuzione delle emissioni di CO2 nelle città. .

Keywords:Agroindustria, efficienza energetica, agricoltura, consumi energetici, tetti verdi e pareti vegetali

  1. Köhler M., Poll P.H. (2010). Long-term performance of selected old Berlin greenroofs in comparison to younger extensive greenroofs in Berlin. Ecological Engineering, 36(5): 722-729.
  2. Nederhoff E.M. (2004). ‘Open’ and’closed’ buffer systems for heat storage. New Zealand Grower: Horticulture New Zealand, 41.
  3. Pérez G., Coma J., Martorell I., Cabeza L.F. (2014). Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renewable and Sustainable Energy Reviews, 39: 139-165.
  4. Perini K., Ottelé M., Fraaij A.L.A., Haas E.M., Raiteri R. (2011). Vertical greening systems and the effect on air flow and temperature on the building envelope. Build Environ, 46: 2287-2294.
  5. Quaak P., Knoef H., and Stassen H. E. (1999). Energy from Biomass. A Review of Combustion and Gasification Technologies. Washington, D.C.: World Bank.
  6. Reed T.B., Das A. (1988). Solar technical information P. handbook of biomass downdraft gasifier engine systems. Golden, CO: Solar Technical Information Program, Solar Energy Research Institute.
  7. Samar M.S., Nourhan M.M. (2012). Green Facades as a New Sustainable Approach Towards Climate Change. Energy Procedia, 18: 507-520.
  8. Santamouris M. (2012). Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy.
  9. Schettini E., Blanco I., Campiotti C., Bibbiani C., Fantozzi F., Vox G. (2016). Green control of microclimate in buildings. Agriculture and Agricultural Science Procedia, 8: 576-582.
  10. Sethi V.P., Sharma S.K. (2007). Survey of cooling technologies for worldwide agricultural greenhouse applications. Solar Energy, 81(12): 1447-1459.
  11. Vox G., Maneta A., Schettini E. (2016a). Evaluation of the radiometric properties of roofing materials for livestock buildings and their effect on the surface temperature. Biosystems Engineering, 144: 26-37, April.
  12. Vox G., Blanco I., Fuina S., Campiotti C., Scarascia Mugnozza G., Schettini E. (2016b). Evaluation of wall surface temperatures in green facades. Proceedings of the Institution of Civil Engineers Engineering Sustainability.
  13. Vox G., Blanco I., Scarascia Mugnozza G., Schettini E., Bibbiani C., Viola C., Campiotti C.A. (2014). Solar Absorption Cooling System for Greenhouse Climate Control: Technical Evaluation. Acta Hort (ISHS), 1037: 533-538.
  14. Vox G., Teitel M., Pardossi A., Minuto A., Tinivella F., Schettini E. (2010). Sustainable Greenhouse Systems. In: Salazar A., Rios I. (eds.). Sustainable Agriculture: Technology, Planning and Management. NY USA: Nova Science Publishers, Inc., 1-79.
  15. Vox G., Schettini E., Lisi Cervone A., Anifantis A. (2008) Solar thermal collectors for greenhouse heating. Acta Horticulturae (ISHS), 801: 787-794.
  16. Wang F. and Yoshida H. (2012). Improving Air-Conditioners’Energy Efficiency Using Green Roof Plants, Energy Efficiency – A Bridge to Low Carbon Economy. http:// www.intechopen.com/books/energy-efficiency-a-bridge-tolowcarboneconomy/.
  17. Ziesemer J. (2007). Energy use in organic systems. FAO. http://ec.europa.eu/energy/doc/20140528 energy security communication.pdf.
  18. Jim C.Y., Tsang S.W. (2011). Biophysical properties and thermal performance of an intensive green roof. Build Environ, 46: 1263-1274.
  19. Jaffal I., Ouldboukhitine S.E., Belarbi R. (2012). A comprehensive study of the impact of green roofs on building energy performance. Renew Energ, 43: 157-164.
  20. IEA. Capturing the Multiple benefits of Energy Efficiency (2014).
  21. Gargari C., Bibbiani C., Fantozzi F., Campiotti C.A. (2016b). Environmental impact of Green roofing: the contribute of a green roof to the sustainable use of natural resources in a life cycle approach. In Florence “Sustainability of Well-Being International Forum”. Food for Sustainability and not just food, FlorenceSWIF2015. In: Agriculture and Agriculture Science Procedia, 8: 646-656.
  22. Gargari C., Bibbiani C., Fantozzi F., Campiotti C.A. (2016a). Simulation of the thermal behaviour of a building retrofitted with a green roof: optimization of energy efficiency with reference to italian climatic zones. In: Florence “Sustainability of Well-Being International Forum”. Food for Sustainability and not just food, FlorenceSWIF2015. In: Agriculture and Agriculture Science Procedia, 8: 628-636.
  23. Fernandez-Cañero R., Emilsson T., Fernandez-Barba C., Herrera Machuca M.A. (2013). Green roof systems: A study of public attitudes and preferences in southern Spain. J Environ Manage, 128: 106-115.
  24. FAO (2011). “Energy-Smart”. Food For People and Climate. Issue Paper.
  25. Energy Efficiency Directive 2012/27/EU (EED).
  26. ENEA, Rapporto Annuale sull’Efficienza Energetica (RAEE) 2015.
  27. Dion L., Lefsrud, M., Orsat V., Cimon C. (2013). Biomass Gasification and Syngas Combustion for Greenhouse CO2 Enrichment. Bioresources, 8(2): 1520-1538.
  28. COM (2016). 51 final. An EU Strategy on Heating and Cooling.
  29. COM (2014). 179 final. Action Plan for the future of Organic Production in the European Union.
  30. Cheng C.Y., Cheung K.K.S., Chu L.M. (2010). Thermal performance of a vegetated cladding system on facade walls. Build Environ, 45: 1779-1787.
  31. Chalabi Z.S., Biro A., Bailey B.J., Aikman D.P., Cockshull K. (2002). Optimal control strategies for carbon dioxide enrichment in glasshouse tomato crops, Part II: use of carbon dioxide from the exhaust gases of natural gas red boilers. Biosystems Engineering, 81(4): 421-431.
  32. Castleton H.F., Stovin V., Beck S.B.M., Davison J.B. (2010). Green roofs: building energy savings and the potential of retrofit. Energy Build, 42: 1582-1591.
  33. Caputo A., Palumbo M., Pelagagge P., Scacchia F., 2005. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass Bioenergy, 28(1): 35-51.
  34. Campiotti C., Schettini E., Alonzo G., Viola C., Bibbiani C., Scarascia Mugnozza G. Blanco I., Vox G. (2013). Building green covering for a sustainable use of energy. Journal of Agricultural Engineering, XLIV(s2): e50.
  35. Campiotti C., Morosinotto G., Puglisi G., Schettini E., Vox G. (2016b). Performance evaluation of a solar cooling plant applied for greenhouse thermal control. Agriculture and Agricultural Science Procedia, 8: 664-669.
  36. Campiotti C., Giagnacovo G., Latini A., Scoccianti M., Viola C. (2016a). Efficienza Energetica: la strada per innovare il sistema agricolo-alimentare. Rivista ENEA “Energia, ambiente e innovazione”, 2: 36-41. DOI: 10.12910/EAI2016-025
  37. Campiotti C., Bibbiani C., Viola C. (2015). Energy efficiency as option for improving sustainability of agrofood system. Quality – Access to Success, 17 (S1): 194-199.
  38. Blanco I., Schettini E., Scarascia Mugnozza G., Puglisi G., Campiotti C.A., Giagnacovo G., Vox G. (2015). Thermal solar collector and adsorption system applied to greenhouse cooling. Symposium “Actual Tasks on Agricultural Engineering”, Opatija, Croatia.
  39. Bibbiani C., Fantozzi F., Gargari C., Campiotti C., Schettini E., Vox G. (2016). Wood Biomass as Sustainable Energy for Greenhouses Heating in Italy. Agriculture and Agricultural Science Procedia, 8: 637-645.
  40. Berardi U., Ghaffarian Hoseini A.H., Ghaffarian Hoseini A. (2014). State-of-the-art analysis of the environmental benefits of green roofs. Appl Energ, 115: 411-428.
  41. Accenture & UN-Global Compact (2012).

  • Climate control inside a greenhouse by means of a solar cooling system G. Puglisi, G. Vox, E. Schettini, G. Morosinotto, C.A. Campiotti, in Acta Horticulturae /2018 pp.61
    DOI: 10.17660/ActaHortic.2018.1227.7
  • Shading screens and ventilation efficiency in a naturally ventilated greenhouse by means of CFD modeling E. Santolini, A. Barbaresi, B. Pulvirenti, D. Torreggiani, P. Tassinari, in Acta Horticulturae /2021 pp.327
    DOI: 10.17660/ActaHortic.2021.1311.41
  • Experimental results of a solar cooling system for greenhouse climate control G. Puglisi, G. Vox, C.A. Campiotti, G. Scarascia Mugnozza, E. Schettini, in Acta Horticulturae /2020 pp.1107
    DOI: 10.17660/ActaHortic.2020.1296.140
  • Geo-Economy of the Future Irina B. Mironova, Lilia R. Moiseeva, Elmira F. Nigmatulina, Marina G. Mirgorodskaya, pp.885 (ISBN:978-3-030-92302-0)

Carlo Alberto Campiotti, Carlo Bibbiani, Alberto Campiotti, Evelia Schettini, Corinna Viola, Giuliano Vox, Innovative sustainable strategies in agro-food systems and in buildings for energy efficiency in "RIVISTA DI STUDI SULLA SOSTENIBILITA'" 2/2016, pp 79-96, DOI: 10.3280/RISS2016-002008