Psychological and sociodemographic variables correlated with SARS-CoV-2 vaccine hesitancy in Italy

Titolo Rivista PSICOLOGIA DELLA SALUTE
Autori/Curatori Benedetta Vai, Federico Calesella, Giacomo Saibene, Federica Colombo, Elisa Caselani, Mariagrazia Palladini, Francesco Benedetti
Anno di pubblicazione 2025 Fascicolo 2025/2
Lingua Inglese Numero pagine 19 P. 13-31 Dimensione file 254 KB
DOI 10.3280/PDS2025-002002
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

SARS-CoV-2 vaccine hesitancy, defined as a delay in acceptance or refusal of vaccine, is still a major hurdle in achieving community immunity. Identifying target subpopulations and assessing the specific contribution of psychological variables may help to tailor effective communication strategies, improving vaccination adhesion. In this study we explore socio-demographic and psychological factors that correlate and predict vaccine hesitancy applying machine learning methodologies. In a sample of 1728 individuals, recruited from 27 February 2020 to 5 January 2021 in Italy, 26% of participants would not vaccinate. Vaccination hesitancy was predicted by older age, being women, lower education, living in less populated settlements, higher fatalistic attitude, lower perceived COVID-19 severity and threat, lower perceived efficacy of containment measures, and influence of media on protective behaviors, whereas vaccine acceptance was predicted by being a student, scientific education, and having a family member affected by pre-existing severe diseases. Vaccine hesitancy was also associated with higher moral disengagement. The model reached a balance accuracy of 67% and AUC of 72%, correctly identifying 69% of the hesitant individuals. Psychological variables emerged as important determinants of vaccine adhesion, together with socio-demographic variables that may help in identifying target populations and to tailor better communication strategies.

L’esitazione vaccinale per SARS-CoV-2, definita come un ritardo nell’adesione o il rifiuto del vaccino, identifica ancora a oggi un possibile ostalo nel controllo della diffusione epidemica. Identificare le sottopopolazioni maggiormente a rischio e valutare il contributo specifico di diverse variabili psicologiche può aiutare a personalizzare strategie di comunicazione efficaci e migliorare l’adesione vaccinale. In questo studio abbiamo valutato i fattori socio-demografici e psicologici che correlano e predicono l’esitazione vaccinale utilizzando metodologie di machine learning. Su 1728 individui, reclutati dal 27 febbraio 2020 al 5 gennaio 2021 in Italia, il 26% dei partecipanti non era incline a essere vaccinato. L’esitazione vaccinale era associata a una maggiore età, genere femminile, a un’istruzione inferiore, al vivere in centri abitativi meno popolati, a un atteggiamento fatalistico, a una ridotta percezione soggettiva di gravità e minaccia del COVID-19, a una minore percezione di efficacia delle misure di contenimento di ridurre il rischio di infezione e di influenza dei media sull’adozione di comportamenti protettivi. L’adesione al vaccino si associava invece allo status di studente, all’ aver ricevuto una educazione scientifica e all’avere un membro della famiglia affetto da gravi malattie fisiche preesistenti. L’esitazione vaccinale era anche associata a un maggiore disimpegno morale. Queste variabili hanno permesso di predire l’adesione vaccinale con un’accuratezza bilanciata del 67% e un’AUC del 72%, identificando correttamente il 69% degli individui esitanti. Non solo le variabili socio-demografiche, come genere, età e istruzione, emergono come importanti determinanti dell’adesione al vaccino, ma anche dimensioni psicologiche, come la percezione del rischio, il locus of control e il disimpegno morale, esercitano un ruolo cruciale nel modellare l’adesione al vaccino, aiutando a identificare popolazioni target che possono beneficiare di strategie di comunicazione mirate.

Parole chiave:COVID-19, esitazione vaccinale, percezione del rischio, media, machine learning.

  1. Abram, S. V., Helwig, N. E., Moodie, C. A., DeYoung, C. G., MacDonald III, A. W., and Waller, N. G. (2016). Bootstrap enhanced penalized regression for variable selection with neuroimaging data. Frontiers in neuroscience, 10: 344.
  2. Amit Aharon, A., Nehama, H., Rishpon, S., and Baron-Epel, O. (2018). A path analysis model suggesting the association between health locus of control and compliance with childhood vaccinations. Human vaccines and immunotherapeutics, 14(7): 1618-1625. DOI: 10.1080/21645515.2018.147130
  3. Aw, J., Seng, J. J. B., Seah, S. S. Y., and Low, L. L. (2021). COVID-19 vaccine hesitancy— A scoping review of literature in high-income countries. Vaccines, 9(8): 900.
  4. Bandura, A., Barbaranelli, C., Caprara, G. V., and Pastorelli, C. (1996). Mechanisms of moral disengagement in the exercise of moral agency. Journal of personality and social psychology, 71(2): 364. DOI: 10.1037/0022-3514.71.2.36
  5. Barello, S., Nania, T., Dellafiore, F., Graffigna, G., and Caruso, R. (2020). ‘Vaccine hesitancy’ among university students in Italy during the COVID-19 pandemic. European journal of epidemiology, 35(8): 781-783.
  6. Bell, S., Clarke, R., Mounier-Jack, S., Walker, J. L., and Paterson, P. (2020). Parents’ and guardians’ views on the acceptability of a future COVID-19 vaccine: A multi-methods study in England. Vaccine, 38(49): 7789-7798.
  7. Brewer, N. T., Chapman, G. B., Gibbons, F. X., Gerrard, M., McCaul, K. D., and Weinstein, N. D. (2007). Meta-analysis of the relationship between risk perception and health behavior: the example of vaccination. Health psychology, 26(2): 136. DOI: 10.1037/02786133.26.2.13
  8. Brug, J., Aro, A. R., and Richardus, J. H. (2009). Risk perceptions and behaviour: towards pandemic control of emerging infectious diseases. International Journal of Behavioral Medicine, 16(1): 3-6.
  9. Bunea, F., She, Y., Ombao, H., Gongvatana, A., Devlin, K., and Cohen, R. (2011). Penalized least squares regression methods and applications to neuroimaging. Neuroimage, 55(4): 1519-1527.
  10. Butler, R. (2020). Vaccine Hesitancy: what it means and what we need to know in order to tackle it. World Health Organization, presentation slides, March.
  11. Caprara, G., Barbaranelli, C., Pastorelli, C., Iafrate, C., Beretta, M., Steca, P., and Bandura, A. (2006). The measure of the moral disengagement in the context of the transgressions of daily living. Giornale Italiano di Psicologia, 33: 83-106.
  12. Caprara, G. V., Fida, R., Vecchione, M., Tramontano, C., and Barbaranelli, C. (2009). Assessing civic moral disengagement: Dimensionality and construct validity. Personality and individual differences, 47(5): 504-509.
  13. Card, K. G. (2022). Collectivism, individualism and COVID-19 prevention: a cross sectional study of personality, culture and behavior among Canadians. Health Psychology and Behavioral Medicine, 10(1): 415-438. DOI: 10.1080/21642850.2022.206957
  14. Caserotti, M., Girardi, P., Rubaltelli, E., Tasso, A., Lotto, L., and Gavaruzzi, T. (2021). Associations of COVID-19 risk perception with vaccine hesitancy over time for Italian residents. Social Science and Medicine, 272: 113688. ternet research, 22(5): e19128. DOI: 10.2196/1912
  15. Floyd, D. L., Prentice-Dunn, S., and Rogers, R. W. (2000). A meta-analysis of research on protection motivation theory. Journal of applied social psychology, 30(2): 407-429. 10.1111/j.1559-1816.2000.tb02323.x
  16. Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1): 1.
  17. Gazzetta Ufficiale della Repubblica Italiana (2020, October 24). Decreto del Presidente del Consiglio dei Ministri [Press release]. Retrieved from https://www.gazzettaufficiale.it/eli/id/2020/10/25/20A05861/sg
  18. Giubilini, A., Douglas, T., and Savulescu, J. (2018). The moral obligation to be vaccinated: utilitarianism, contractualism, and collective easy rescue. Medicine, Health Care and Philosophy, 21(4): 547-560.
  19. Hilton, S., and Smith, E. (2010). Public views of the UK media and government reaction to the 2009 swine flu pandemic. BMC Public Health, 10(1): 1-10.
  20. King, G., and Zeng, L. (2001). Logistic regression in rare events data. Political analysis, 9(2): 137-163.
  21. Kreps, S., Prasad, S., Brownstein, J. S., Hswen, Y., Garibaldi, B. T., Zhang, B., and Kriner,
  22. D. L. (2020). Factors associated with US adults’ likelihood of accepting COVID-19 vaccination. JAMA network open, 3(10): e2025594-e2025594.
  23. Laurin, C., Boomsma, D., and Lubke, G. (2016). The use of vector bootstrapping to improve variable selection precision in Lasso models. Statistical applications in genetics and molecular biology, 15(4): 305-320.
  24. Lavoie, K., Gosselin-Boucher, V., Stojanovic, J., Gupta, S., Gagné, M., Joyal-Desmarais, K.,
  25. .. and Bacon, S. (2022). Understanding national trends in COVID-19 vaccine hesitancy in Canada: results from five sequential cross-sectional representative surveys spanning April 2020–March 2021. BMJ open, 12(4): e059411.
  26. Lazarus, J. V., Ratzan, S. C., Palayew, A., Gostin, L. O., Larson, H. J., Rabin, K., Kimball, S., and El-Mohandes, A. (2021). A global survey of potential acceptance of a COVID-19 vaccine. Nature medicine, 27(2): 225-228.
  27. Li, Z., and Sun, X. (2021). Analysis of the impact of media trust on the public’s motivation to receive future vaccinations for COVID-19 based on protection motivation theory. Vaccines, 9(12): 1401.
  28. Lin, C., Tu, P., and Beitsch, L. M. (2021). Confidence and receptivity for COVID-19 vaccines: a rapid systematic review. Vaccines, 9(1): 16.
  29. Liu, L., Xie, J., Li, K., and Ji, S. (2020). Exploring how media influence preventive behavior and excessive preventive intention during the COVID-19 pandemic in China. International Journal of Environmental Research and Public Health, 17(21): 7990.
  30. MacDonald, N. E. (2015). Vaccine hesitancy: Definition, scope and determinants. Vaccine, 33(34): 4161-4164.
  31. Maftei, A., and Holman, A.-C. (2020). Beliefs in conspiracy theories, intolerance of uncertainty, and moral disengagement during the coronavirus crisis. Ethics and Behavior, 1-11. DOI: 10.1080/10508422.2020.184317
  32. Martelloni, G., and Martelloni, G. (2020). Analysis of the evolution of the Sars-Cov-2 in Italy, the role of the asymptomatics and the success of Logistic model. Chaos, Solitons and Fractals, 140: 110150.
  33. McCall, B. (2020). COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread. The Lancet Digital Health, 2(4): e166-e167. DOI: 10.1016/S25897500(20)30054-
  34. McElfish, P. A., Willis, D. E., Shah, S. K., Bryant-Moore, K., Rojo, M. O., and Selig, J. P. (2021). Sociodemographic determinants of COVID-19 vaccine hesitancy, fear of infection, and protection self-efficacy. Journal of primary care and community health, 12: 21501327211040746. DOI: 10.1177/2150132721104074
  35. Moscardino, U., Musso, P., Inguglia, C., Ceccon, C., Miconi, D., and Rousseau, C. (2022). Sociodemographic and psychological correlates of COVID-19 vaccine hesitancy and resistance in the young adult population in Italy. Vaccine, 40(16): 2379-2387.
  36. Murphy, J., Vallières, F., Bentall, R. P., Shevlin, M., McBride, O., Hartman, T. K., McKay, R., Bennett, K., Mason, L., and Gibson-Miller, J. (2021). Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nature communications, 12(1): 1-15.
  37. Neumann-Böhme, S., Varghese, N. E., Sabat, I., Barros, P. P., Brouwer, W., van Exel, J., ... and Stargardt, T. (2020). Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-19. The European Journal of Health Economics, 21(7): 977-982.
  38. Neuwirth, K., Dunwoody, S., and Griffin, R. J. (2000). Protection motivation and risk communication. Risk Analysis, 20(5): 721-734. DOI: 10.1111/0272-4332.20506
  39. Olagoke, A. A., Olagoke, O. O., and Hughes, A. M. (2021). Intention to vaccinate against the novel 2019 coronavirus disease: The role of health locus of control and religiosity. Journal of religion and health, 60(1): 65-80.
  40. Palamenghi, L., Barello, S., Boccia, S., and Graffigna, G. (2020). Mistrust in biomedical research and vaccine hesitancy: the forefront challenge in the battle against COVID-19 in Italy. European journal of epidemiology, 35(8): 785-788.
  41. Perussia, F., and Viano, R. (2008). Mini locus of control scale. In Di Nuovo S., Sprini G. (a cura di), Teorie e metodi della psicologia italiana. Tendenze attuali. Milano: FrancoAngeli.
  42. Poletti, S., Vai, B., Mazza, M. G., Zanardi, R., Lorenzi, C., Calesella, F., Cazzetta, S., Branchi, I., Colombo, C., and Furlan, R. (2021). A peripheral inflammatory signature discriminates bipolar from unipolar depression: A machine learning approach. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 105: 110136.
  43. Popova, L. (2012). The extended parallel process model: illuminating the gaps in research. Health Education and Behavior, 39(4): 455-473. havior: an application of the extended parallel process model. Journal of Behavioral Medicine, 1-12.
  44. Rogers, R. W. (1983). Cognitive and psychological processes in fear appeals and attitude change: A revised theory of protection motivation. Social psychophysiology: A sourcebook, 153-176.
  45. Rogers, R. W., and Prentice-Dunn, S. (1997). Protection motivation theory. In Gochman D.
  46. S. (Ed.), Handbook of health behavior research 1: Personal and social determinants. New York: Plenum Press, 113–132.
  47. Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological monographs: General and applied, 80(1): 1.
  48. Saad-Roy, C. M., Wagner, C. E., Baker, R. E., Morris, S. E., Farrar, J., Graham, A. L., Levin, S. A., Mina, M. J., Metcalf, C. J. E., and Grenfell, B. T. (2020). Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science, 370(6518) : 811-818.
  49. Sagone, E., and De Caroli, M. E. (2013). Personality factors and civic moral disengagement in law and psychology university students. Procedia-Social and Behavioral Sciences, 93: 158-163.
  50. Salali, G. D., and Uysal, M. S. (2020). COVID-19 vaccine hesitancy is associated with beliefs on the origin of the novel coronavirus in the UK and Turkey. Psychological medicine, 1-3. DOI: 10.1017/S003329172000406
  51. Schwarzinger, M., Watson, V., Arwidson, P., Alla, F., and Luchini, S. (2021). COVID-19 vaccine hesitancy in a representative working-age population in France: a survey experiment based on vaccine characteristics. The Lancet Public Health, 6(4): e210-e221. DOI: 10.1016/S2468-2667(21)00012-
  52. Shore, D. A. (2003). Communicating in times of uncertainty: the need for trust. Journal of health communication, 8(S1): 13-14. DOI: 10.1080/71385197
  53. Troiano, G., and Nardi, A. (2021). Vaccine hesitancy in the era of COVID-19. Public Health, 194: 245-251.
  54. Truong, J., Bakshi, S., Wasim, A., Ahmad, M., and Majid, U. (2021). What factors promote vaccine hesitancy or acceptance during pandemics? A systematic review and thematic analysis. Health promotion international.
  55. Vai, B., Cazzetta, S., Ghiglino, D., Parenti, L., Saibene, G., Toti, M., Verga, C., Wykowska, A., and Benedetti, F. (2020). Risk perception and media in shaping protective behaviors: insights from the early phase of COVID-19 Italian outbreak. Frontiers in psychology, 11.
  56. Vaishya, R., Javaid, M., Khan, I. H., and Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(4): 337-339.
  57. Vinceti, M., Filippini, T., Rothman, K. J., Di Federico, S., and Orsini, N. (2021). SARS-CoV2 infection incidence during the first and second COVID-19 waves in Italy. Environmental research, 197: 111097.
  58. Wallace, C., Leask, J., and Trevena, L. J. (2006). Effects of a web based decision aid on parental attitudes to MMR vaccination: a before and after study. Bmj, 332(7534): 146-149.
  59. Wallston, K. A., Strudler Wallston, B., and DeVellis, R. (1978). Development of the multidimensional health locus of control (MHLC) scales. Health education monographs, 6(1): 160-170. DOI: 10.1177/10901981780060010
  60. WHO. (2020). COVID-19 Dashboard. Geneva: World Health Organization. Retrieved 08 November 2021 from https://covid19.who.int/Witte, K. (1992). Putting the fear back into fear appeals: The extended parallel process model.
  61. Communications Monographs, 59(4): 329-349.
  62. Wu, J. T., Leung, K., and Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet, 395(10225): 689-697. DOI: 10.1016/S01406736(20)30260-
  63. Zadrozny, B., Langford, J., and Abe, N. (2003, November). Cost-sensitive learning by costproportionate example weighting. In Third IEEE international conference on data mining (pp. 435-442). IEEE.
  64. Zarbo, C., Candini, V., Ferrari, C., d’Addazio, M., Calamandrei, G., Starace, F., ... and De Girolamo, G. (2022). COVID-19 Vaccine Hesitancy in Italy: Predictors of Acceptance, Fence Sitting and Refusal of the COVID-19 Vaccination. Frontiers in Public Health, 10.
  65. Zeballos Rivas, D. R., Lopez Jaldin, M. L., Nina Canaviri, B., Portugal Escalante, L. F., Alanes Fernández, A. M., and Aguilar Ticona, J. P. (2021). Social media exposure, risk perception, preventive behaviors and attitudes during the COVID-19 epidemic in La Paz, Bolivia: A cross sectional study. PloS one, 16(1): e0245859.
  66. Zhang, G. L., Khan, A. M., Srinivasan, K. N., August, J. T., and Brusic, V. (2005). Neural models for predicting viral vaccine targets. Journal of bioinformatics and computational biology, 3(05): 1207-1225. DOI: 10.1142/S021972000500146
  67. Zintel, S., Flock, C., Arbogast, A. L., Forster, A., von Wagner, C. and Sieverding, M. (2023). Gender differences in the intention to get vaccinated against COVID-19: a systematic review and meta-analysis. Journal of Public Health, 31(8): 1303-1327.
  68. Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology), 67(2): 301-320.

Benedetta Vai, Federico Calesella, Giacomo Saibene, Federica Colombo, Elisa Caselani, Mariagrazia Palladini, Francesco Benedetti, Psychological and sociodemographic variables correlated with SARS-CoV-2 vaccine hesitancy in Italy in "PSICOLOGIA DELLA SALUTE" 2/2025, pp 13-31, DOI: 10.3280/PDS2025-002002