Big data o data that are getting bigger?

Titolo Rivista SOCIOLOGIA E RICERCA SOCIALE
Autori/Curatori Biagio Aragona
Anno di pubblicazione 2016 Fascicolo 2016/109
Lingua Italiano Numero pagine 12 P. 42-53 Dimensione file 59 KB
DOI 10.3280/SR2016-109005
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

The potential of Big Data for sociology is being recognized broadly, but there is still a wide gap between its potential and its realization. One of the reasons is that Big Data encloses types of data which are very different. This articles aims to identify the features of Big Data that are common to other traditional sociological data such as registers, traces and documents. Secondly, its purpose is to propose a typology of Big Data based on four criteria: data origin, flexibility, presence of operational definitions, presence of metadata. Finally, the main methodological issues deriving from the different phases of the data production process are presented for every type of Big Data.;

  1. A. Rajaraman, J. Leskovec, J.D. Ullman (2012), Mining of Massive Datasets, Cambridge, Cambridge University Press.
  2. M. Savage, R. Burrows (2014), «After the Crisis? Big Data and the Methodological Challenges of Empirical Sociology», Big Data and Society, April-June, pp. 1-6, DOI: 10.1177/2053951714540280
  3. J. Pokorny (2013), «NoSql Databases: A Step to Database Scalability in Web Environment», International Journal of Web Information Systems, IX, 1, pp. 69-82, DOI: 10.1108/17440081311316398
  4. M.H. Mulry (2008), Coverage Error, in P.J. Lavrakas (ed.), Encyclopaedia of Survey Research Methods, London, Sage.
  5. B.L. Monroe (2013), «The Five Vs of Big Data Political Science», Political Analysis, Virtual Issue 5 on Big Data in Political Science, pp. 1-9.
  6. M. Minelli, M. Chambers, A. Dhiraj (2013), Big Data, Big Analytics, Hoboken (NJ), Wiley.
  7. E. Mayo (1933), The Human Problems of an Industrial Civilisation, New York, MacMillan.
  8. V. Mayer-Schonberger, K. Cukier (2013), Big Data: A Revolution that will change how we live, work and think, London, John Murray.
  9. N. Marz, J. Warren (2012), Big Data: Principles and Best Practices of Scalable Realtime Data Systems, New York, Meap Edition.
  10. C.D. Manning, P. Raghavan, H. Schütze (2008), Introduction to Information Retrieval, Cambridge, Cambridge University Press. G. Martinotti (1988), Metropolitan Areas in Italy 1961-1981: A Statistical Exploration into Criteria for Definition, Working paper of the Second International Conference on Policies Strategies and Projects for Metropolitan Areas, Milano, novembre.
  11. R.M. Lee (2000), Unobtrusive Methods in Social Research, Philadelphia, Open University Press.
  12. D. Laney (2001), 3D Data Management: Controlling Data Volume, Velocity and Variety, MetaGroup, http://blog.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.
  13. T. Kuhn (1962), The Structure of Scientific Revolution, Chicago, Chicago University Press; tr. it., La struttura delle rivoluzioni scientifiche, Torino, Einaudi, 1979.
  14. R. Kitchin (2014b), «Big Data, New Epistemologies and Paradigm Shifts», Big Data & Society, I, 1, June, pp. 1-12, DOI: 10.1177/2053951714528481
  15. R. Kitchin (2014a), The Data Revolution, London, Sage.
  16. S.N. Hesse-Biber, R.B. Johnson (2013), «Coming at Things Differently Future Directions of Possible Engagement with Mixed Methods Research», Journal of Mixed Methods Research, VII, 2, pp. 103-9, DOI: 10.1177/1558689813483987
  17. J. Han, M. Kamber, J.Pei (2010), Data Mining: Concepts and Techniques, Waltham (MA), Morgan Kaufmann.
  18. R.M. Groves, L. Lyberg (2010), «Total Survey Error: Past, Present and Future», Public Opinion Quarterly, LXXIV, 5, pp. 849-79, DOI: 10.1093/poq/nfq065
  19. E. Gray, W. Jennings, S. Farrall, C. Hay (2015), «Small Big Data: Using Multiple Data-sets to explore Unfolding Social and Economic Change», Big Data & Society, I, 2, DOI: 10.1177/2053951715589418
  20. M. Farber, M. Cameron, C. Ellis, J. Sullivan (2011), Massive Data Analytics and the Cloud: A Revolution in Intelligence Analysis, http://www.boozallen.com/media/file/MassiveData.pdf.
  21. J.W. Creswell, V.P. Clark (2007), Designing and Conducting Mixed Methods Research, London, Sage.
  22. J. Crampton, M. Graham, A. Poorthuis, T. Shelton, M. Stephens, M. Wilson, M. Zook (2012), Beyond the Geotag? Deconstructin Big Data and Leveraging the Potential of the Geoweb, http://www.uky.edu/tmute2/geography_methods/readingPDFs/2012-Beyond-the-Geotag-2012.10.01.pdf.
  23. d. boyd, K. Crawford (2012), «Critical Questions for Big Data»,Information, Communication and Society,XV, 5, pp.662-79, DOI: 10.1080/1369118X.2012.678878
  24. G. Boccia Artieri (2015), Gli effetti sociali del web. Forme della comunicazione e metodologie della ricerca online, Milano, FrancoAngeli.
  25. B. Aragona (2008), «Una nuova cultura del dato», Sociologia e ricerca sociale, XXIX, 87, pp.159-172, DOI: 10.3280/SR2008-087004
  26. C. Anderson (2008), «The End of Theory: The Data Deluge makes the Scientific Method Obsolete », Wired, June 23, http://www.wired.com/science/discoveries/magazine/16-07/pb_theory.
  27. G. Sgritta (1988), Introduzione, in L. Benvenuti (a c. di), Immagini della società italiana,Roma, Istat.
  28. G. Vemuganti (2013), «Metadata Management in Big Data», Infosys Labs Briefings, XI, 1, pp. 17-30.
  29. E.J. Webb, D.T. Campbell, R.D. Schwartz (1966), Unobtrusive Methods: Nonreactive Research in the Social Sciences, Chicago, Rand McNally.
  30. H.F. Weisberg (2005), The Total Survey Error Approach: A Guide to the New Science of Survey Research, Chicago, University of Chicago Press.
  31. P. Zikopoulos, C. Eaton, D. De Roos, T. Deutsch, G. Lapis (2012), Understanding Big Data, New York, McGraw-Hill.
  32. J.M. Clubb, E.K. Scheuch (1980), Historical Social Research: The Use of Historical and Process-produced Data, Stuttgart, Klett-Cotta.

Biagio Aragona, Big data o data that are getting bigger? in "SOCIOLOGIA E RICERCA SOCIALE " 109/2016, pp 42-53, DOI: 10.3280/SR2016-109005