FORMALIZING DARWINISM, NATURALIZING MATHEMATICS

Titolo Rivista PARADIGMI
Autori/Curatori Fabio Sterpetti
Anno di pubblicazione 2015 Fascicolo 2015/2
Lingua Italiano Numero pagine 28 P. 133-160 Dimensione file 125 KB
DOI 10.3280/PARA2015-002009
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Negli ultimi decenni due diverse e apparentemente non correlate linee di ricerca hanno connesso sempre di più la matematica e l’evoluzionismo. Infatti, da una parte si sono avuti diversi tentativi di formalizzare il darwinismo mentre dall’altra diversi tentativi di naturalizzare la logica e la matematica sono stati posti in essere. Tali ricerche possono apparire o completamente indipendenti, oppure convergenti. Possono in effetti sembrare supportare entrambe una concezione naturalistica. L’evoluzionismo è infatti cruciale per una visione naturalistica e formalizzarlo sembra essere un modo per rafforzare la sua scientificità. Al contrario, si metterà in luce come tali linee di ricerca possono essere viste come contrastanti, dato che la concezione della conoscenza cui si rifanno può essere messa in discussione dalla adozione di una prospettiva evoluzionistica.;

Keywords:Conoscenza, matematica, naturalismo, realismo scientifico, verità.

  1. Giere R.N. (2006). Modest Evolutionary Naturalism. Biological Theory, 1, 1: 52-60.
  2. Grafen A. (2002). A First Formal Link between the Price Equation and an Optimization Program. Journal of Theoretical Biology, 217, 1: 75-91.
  3. Grafen A. (2007). The Formal Darwinism Project: a Mid-Term Report. Journal of Evolutionary Biology, 20, 4: 1243-1254. Grafen A. (2014). The Formal Darwinism Project in Outline. Biology and Philosophy, 29, 2: 155-174.
  4. Griesemer J. (2013). Formalization and the Meaning of “Theory” in the Inexact Biological Sciences. Biological Theory, 7, 4: 298-310.
  5. Halvorson H. (2012). What Scientific Theories Could Not Be. Philosophy of Science, 79, 2: 183-206.
  6. Jacquette D. (2012). Applied Mathematics in the Sciences. In: Trobok M., Miščević N. and Žarnić B., eds., Between Logic and Reality. Dordrecht: Springer: 29-57.
  7. Kitcher P. (1978). The Naturalists Return. The Philosophical Review, 101, 1: 53-114.
  8. Kornblith H. (2002). Knowledge and its Place in Nature. Oxford: Oxford University Press.
  9. Gardner A. (2013). Ultimate Explanations Concern the Adaptive Rationale for Organism Design. Biology and Philosophy, 28, 5: 787-791.
  10. Enoch D. and Schechter J. (2008). How Are Basic Belief-Forming Methods Justified? Philosophy and Phenomenological Research, 76, 3: 547-579.
  11. Dutilh Novaes C. (2012). Formal Languages in Logic. A Philosophical and Cognitive Analysis. Cambridge: Cambridge University Press.
  12. Downes S.M. (2000). Truth, Selection and Scientific Inquiry. Biology and Philosophy, 15, 3: 425-442.
  13. Dieks D., González W.J., Hartmann S., Stöltzner M. and Weber M., eds., Probabilities, Laws, and Structures. Dordrecht: Springer: 109-121.
  14. Dorato M. (2012). Mathematical Biology and the Existence of Biological Laws. In:
  15. Dipert R.R. (1977). Peirce’s Theory of the Geometrical Structure of Physical Space. Isis, 68, 3: 404-413.
  16. Dehaene S., Duhamel J.-R., Hauser M.D. and Rizzolatti G., eds. (2005). From Monkey Brain to Human Brain. Cambridge (MA): MIT Press.
  17. De Cruz H. and De Smedt J. (2012). Evolved Cognitive Biases and the Epistemic Status of Scientific Beliefs. Philosophical Studies, 157, 3: 411-429.
  18. De Cruz H., Boudry M., De Smedt J. and Blancke S. (2011). Evolutionary Approaches to Epistemic Justification. Dialectica, 65, 4: 517-535.
  19. De Cruz H. (2011). Through a Mind Darkly. PhD thesis. Groningen: University of Groningen.
  20. De Cruz H. (2007). Innate Ideas as a Naturalistic Source of Mathematical Knowledge. PhD thesis. Brussel: Vrije Universiteit.
  21. De Cruz H. (2006). Towards a Darwinian Approach to Mathematics. Foundations of Science, 11, 1-2: 157-196.
  22. De Cruz H. (2004). Why Humans Can Count Large Quantities Accurately. Philosophica, 74: 63-83.
  23. Chaitin G. (2012). Proving Darwin. New York: Pantheon Books.
  24. Cellucci C. (2014). Knowledge, Truth and Plausibility. Axiomathes, 24, 4: 517-532. Cellucci C. (forthcoming). Rethinking Knowledge. Metaphilosophy.
  25. Cellucci C. (2013b). Top-Down and Bottom-Up Philosophy of Mathematics. Foundations of Science, 18, 1: 93-106.
  26. Cellucci C. (2013a). Rethinking Logic. Logic in Relation to Mathematics, Evolution, and Method. Dordrecht: Springer.
  27. Burgess A.G. and Burgess J.P. (2011). Truth. Princeton: Princeton University Press.
  28. Bunge M. (2012). The Correspondence Theory of Truth. Semiotica, 188: 65-75.
  29. Brown J.R. (2012). Platonism, Naturalism, and Mathematical Knowledge. New York: Routledge.
  30. Barberousse A. and Samadi S. (2015). Formalising Evolutionary Theory. In: Heams T., Huneman P., Lecointre G. and Silberstein M., eds., Handbook of Evolutionary Thinking in the Sciences. Dordrecht: Springer: 229-246. Batty C.J.K., Crewe P., Grafen A. and Gratwick R. (2014). Foundations of a Mathematical Theory of Darwinism. Journal of Mathematical Biology, 69, 2: 295-334.
  31. Balaguer M. (2009). Realism and Anti-Realism in Mathematics. In: Gabbay D., Thagard P. and Woods J., eds., Philosophy of Mathematics. Amsterdam: Elsevier: 117-151.
  32. Ao P. (2005). Laws in Darwinian Evolutionary Theory. Physics of Life Reviews, 2, 2: 117-156.
  33. Kragh H. (2012). Is Space Flat? Nineteenth Century Astronomy and Non-Euclidean Geometry. Journal of Astronomical History and Heritage, 15, 3: 149-158.
  34. Unger P. (1971). A Defense of Skepticism. The Philosophical Review, 80, 2, 198-219.
  35. Van Kerkhove B. (2006). Mathematical Naturalism: Origins, Guises, and Prospects. Foundations of Science, 11, 1-2: 5-39.
  36. Weir A. (2005). Naturalism Reconsidered. In: Shapiro S., ed., The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press: 460-482.
  37. Wilkins J.S. and Griffiths P.E. (2013). Evolutionary Debunking Arguments in Three Domains: Fact, Value, and Religion. In: Maclaurin J. and Dawes G., eds., A New Science of Religion. New York: Routledge: 133-146.
  38. Williams M.B. (1973). The Logical Status of the Theory of Natural Selection and Other Evolutionary Controversies. In: Bunge M., ed., The Methodological Unity of Science. Dordrecht: D. Reidel Publishing Company: 84-102.
  39. Wray K.B. (2013). Success and Truth in the Realism/Anti-Realism Debate. Synthese, 190, 9: 1719-1729.
  40. Krebs N. (2011). Our Best Shot at Truth: Why Humans Evolved Mathematical Abilities. In: Frey U.J., Störmer C. and Willführ K.P., eds., Essential Building Blocks of Human Nature. Dordrecht: Springer: 123-141.
  41. Kyburg H. (1965). Comments on Salmon’s “Inductive Evidence”. American Philosophical Quarterly, 2, 4: 274-276.
  42. Lycan W.G. (2006). On the Gettier Problem Problem. In: Hetherington S., ed., Epistemology Futures. Oxford: Oxford University Press: 148-168.
  43. Millikan R. (1984). Naturalist Reflections on Knowledge. Pacific Philosophical Quarterly, 65, 4: 315-334.
  44. Nisbett R. and Ross L. (1980). Human Inference: Strategies and Shortcomings. Englewood Cliffs (NJ): Prentice-Hall.
  45. Nozick R. (1993). The Nature of Rationality. Princeton: Princeton University Press.
  46. Nozick R. (1995). Socratic Puzzles. Phronesis, 40, 2: 143-155.
  47. Nozick R. (2001). Invariances. Cambridge (MA): Harvard University Press.
  48. Núñez R. (2006). Numbers and Arithmetic: Neither Hardwired Nor Out There. Biological Theory, 4, 1: 68-83.
  49. Orzack S.H. and Forber P. (2012). Adaptationism. In: Zalta E.N., ed., The Stanford Encyclopedia of Philosophy. Winter 2012 Edition.
  50. Pelletier F.J., Elio R. and Hanson P. (2008). Is Logic All in Our Heads? From Naturalism to Psychologism. Studia Logica, 88, 1: 3-66.
  51. Peirce C.S. (CP) (1931-1958). Collected Papers of Charles Sanders Peirce. Voll. 1-6. Ed. by C. Hartshorne and P. Weiss; Voll. 7-8, ed. by A.W. Burks. Cambridge (MA): Harvard University Press.
  52. Plantinga A. (2006). How Naturalism Implies Skepticism. In: Corradini A., Galvan S. and Lowe E.J., eds., Analytic Philosophy Without Naturalism. New York: Routledge: 29-44.
  53. Plotkin H. (1997). Darwin Machines and the Nature of Knowledge. Cambridge (MA): Harvard University Press. Sage J. (2004). Truth-Reliability and the Evolution of Human Cognitive Faculties. Philosophical Studies, 117, 1-2: 95-106.
  54. Sankey H. (2008). Scientific Realism and the Rationality of Science. Burlington: Ashgate.
  55. Schechter J. (2010). The Reliability Challenge and the Epistemology of Logic. Philosophical Perspectives, 24, 1: 437-464.
  56. Schwartz J. (2008). The Pernicious Influence of Mathematics on Science. In: Kac M., Rota G.C. and Schwartz J., eds., Discrete Thoughts. Boston: Birkhäuser: 19-25.
  57. Stanford P.K. (2006). Exceeding Our Grasp. Oxford: Oxford University Press.
  58. Steiner M. (1998). The Applicability of Mathematics as a Philosophical Problem.
  59. Cambridge (MA): Harvard University Press.
  60. Stich S. (2011). Collected Papers. Volume 1. Oxford: Oxford University Press.
  61. Tegmark M. (2008). The Mathematical Universe. Foundations of Physics, 38, 2: 101-150.
  62. Tennant N. (2014). The Logical Structure of Evolutionary Explanation and Prediction: Darwinism’s Fundamental Schema. Biology and Philosophy, 29, 5: 611-655.
  63. Thompson P. (2007). Formalisations of Evolutionary Biology. In: Matthen M. and Stephens C., eds., Philosophy of Biology. Amsterdam: Elsevier: 485-523.

Fabio Sterpetti, FORMALIZING DARWINISM, NATURALIZING MATHEMATICS in "PARADIGMI" 2/2015, pp 133-160, DOI: 10.3280/PARA2015-002009