La misurazione integrata dei rischi bancari: uno studio simulativo

Titolo Rivista STUDI ECONOMICI
Autori/Curatori Annalisa Di Clemente
Anno di pubblicazione 2010 Fascicolo 2009/99
Lingua Italiano Numero pagine 29 P. 75-103 Dimensione file 748 KB
DOI 10.3280/STE2009-099003
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Financial Risk Aggregation: A Simulative Study - Banks are exposed to many different risk types due to their business activities, such as credit risk, market risk and operational risk. The task of the risk management division is to measure all these risks and to determine the necessary amount of economic capital which is needed as a buffer to absorb unexpected loss associated with each of these risks. In this paper, four approaches are compared with respect to their ability to measure the total banking capital correctly. We find that the traditional approach variance-covariance (N-VaR) significantly underestimates economic capital. The additive approach (Add-VaR) overestimates total risk when risk correlations are less than one. The hybrid method (H-VaR), which combines marginal risks using a formula, is more accurate and tracks the advanced model based on Monte Carlo simulation (MCS) and copula quite well, especially when the risks exhibit very high correlations. The top-down approach based on MCS and Gaussian copula (MCS-copula) is adequate to form a joint distribution from specified marginals in an internally consistent and realistic manner while preserving important properties about the individual risks (asymmetry and fat tails). This comparative study has been realized utilizing simulative data about to credit, market and operational losses. With refer to risk correlations, we have used both simulative values and mean "empirical" values deducted from international accredited studies.

Jel codes:G28, G32, C16, C63

Annalisa Di Clemente, La misurazione integrata dei rischi bancari: uno studio simulativo in "STUDI ECONOMICI " 99/2009, pp 75-103, DOI: 10.3280/STE2009-099003