L’atteggiamento verso i prodotti creativi computazionali: la validazione della scala Acas

Titolo Rivista SOCIOLOGIA E RICERCA SOCIALE
Autori/Curatori Alessandra Micalizzi, Francesco Epifani
Anno di pubblicazione 2025 Fascicolo 2024/135
Lingua Italiano Numero pagine 22 P. 29-50 Dimensione file 286 KB
DOI 10.3280/SR2024-135002
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Artificial intelligence is increasingly permeating our practices, both visibly and subtly. While the mediation of a learning-capable engine facilitates many tasks, it also generates individual and collective anxieties (Pireddu & Meriggi, 2024). Following a review of the state of the art, this paper presents the validation process of the Artificial Creativity Attitude Scale (Acas), a tool designed to measure attitudes toward computationally creative outputs. Drawing from the Technology Acceptance Model (Tam) (Davis, 1989) and a multidimensional conception of attitude (cognitive, emotional, and behavioral components), the paper outlines the item development process and the construction of resulting clusters based on score analysis.

  1. I. Ajzen (1991), «The theory of planned behavior», Organizational Behavior and Human Decision Processes, 50, 2, pp. 179-211, DOI: 10.1016/0749-5978(91)90020
  2. A. Arielli (2021), Even an AI could do that: artificial aestethics, in L. Manovich, E. Arielli (2021), Artificial Aesthetics: A Critical Guide to AI, Media and Design, https://manovich. net/content/04-projects/175-artificial-aesthetics/artificial_aesthetics.chapter_1.pdf, pp. 4-27, ultima consultazione 9/9/2024.
  3. G. Balbi (2023), The digital revolution: A short history of an ideology, Oxford, Oxford University Press.
  4. M. Benedek, R. Bruckdorfer, E. Jauk (2020), «Motives for creativity: Exploring the what and why of everyday creativity», The Journal of Creative Behavior, 54, 3, pp. 610-25.
  5. M.A. Boden (1998), «Creativity and artificial intelligence», Artificial Intelligence, 103, 1-2, pp. 347-56.
  6. M.A. Boden (2010), Creativity and art: Three roads to surprise, Oxford, Oxford University Press.
  7. S.J. Breckler (1984), «Empirical validation of affect, behavior, and cognition as distinct components of attitude», Journal of Personality and Social Psychology, 47, 6, pp. 1191-205, https:// doi.org/10.1037/0022-3514.47.6.1191.
  8. F. Campione, E. Catena, A. Schirripa, D. Caligiore (2024), «Creatività umana e intelligenza artificiale generativa: similarità, differenze e prospettive», Sistemi intelligenti, 1, pp. 13156, DOI: 10.1422/109012
  9. C. Celis Bueno, P.S. Chow, A. Popowicz (2024), «Not “what”, but “where is creativity?”: Towards a relational-materialist approach to generative AI», AI and Society, 40, pp. 339-51,
  10. B. Cheatham, K. Javanmardian, H. Samandari (2019), Confronting the risks of artificial intelligence, McKinsey Q. 2, pp. 1-9.
  11. B. Coppin (2004), Artificial intelligence illuminated, Burlington, Jones e Bartlett Learning.
  12. M. Csikszentmihalyi (1996), Creativity: Flow and the psychology of discovery and invention, New York, Harper Collins.
  13. M. Csikszentmihalyi (2014), Society, culture, and person: a systems view of creativity. The systems model of creativity, Dordrecht, Springer.
  14. M. Damar, A. Özen, Ü.E. Çakmak, E. Özoguz, F.S. Erenay (2024), «Super AI, Generative AI, Narrow AI and Chatbots: An Assessment of Artificial Intelligence Technologies for The Public Sector and Public Administration», Journal of AI, 8, 1, pp. 83-106.
  15. D. De Kerckhove (1993), Brainframes. Mente, tecnologia, mercato, Bologna, Baskeville.
  16. D’Isa F. (2024), La rivoluzione algoritmica delle immagini, Roma, Luca Sossella Editore.
  17. U. Eco (1991), Apocalittici e integrati, Milano, Feltrinelli.
  18. E. Esposito (2022), Comunicazione artificiale: Come gli algoritmi producono intelligenza sociale, Novara, Egea.
  19. V. Fietta, F. Zecchinato, B. Di Stasi, M. Polato, M. Monaro (2021), «Dissociation between users’ explicit and implicit attitudes toward artificial intelligence: An experimental study», Ieee Transactions on Human-Machine Systems, 52, 3, pp. 481-9.
  20. C. Fornell, D.F. Larcker (1981), «Evaluating Structural Equation Models with Unobservable
  21. Variables and Measurement Error», Journal of Marketing Research, 18, 1, pp. 39-50.
  22. S. Grassini (2023), «Development and validation of the AI attitude scale (Aias-4): A brief measure of general attitude toward artificial intelligence», Frontiers in Psychology, 14, 1191628.
  23. J.F. Hair, W.C. Black, B.J. Babin, R.E. Anderson (2014), «Exploratory factor analysis», Multivariate Data Analysis, 7, pp. 7-17.
  24. S. Kumar, S. Choudhury (2022), «Humans, super humans, and super humanoids: debating Stephen Hawking’s doomsday AI forecast», AI Ethics, pp. 1-10,
  25. Y. Liang, S.A. Lee (2017), «Fear of autonomous robots and artificial intelligence: Evidence from national representative data with probability sampling», International Journal of Social Robotics, 9, 3, pp. 379-84,
  26. B. Liu (2023), «Arguments for the Rise of Artificial Intelligence Art: Does AI Art Have Creativity, Motivation, Self-awareness and Emotion?», Arte, Individuo y Sociedad, 35, 3, 811.
  27. D. Long, S. Gupta, J. Anderson, B. Magerko (2021), «The Shape of Story: A Semiotic Artistic Visualization of a Communal Storytelling Experience», Proceedings of the Aaai Conference on Artificial Intelligence and Interactive Digital Entertainment, 13, 2, pp. 204-11,
  28. L. Manovich (2020), Cultural analytics, Cambridge, Mit Press.
  29. L. Manovich, E. Arielli (2021), Artificial Aesthetics: A Critical Guide to AI, Media and Design, https://manovich.net/content/04-projects/175-artificial-aesthetics/artificial_aesthetics. chapter_1.pdf, pp. 4-27, ultima consultazione 9/9/2024.
  30. L. Manovich, E. Arielli (2024), Artificial Aesthetics: Generative AI, Art and Visual Media, https://manovich.net/index.php/projects/artificial-aesthetics, ultima consultazione 9/7/2024.
  31. D. Marikyan, S. Papagiannidis (2023), Unified Theory of Acceptance and Use of Technology: A review, in S. Papagiannidis (ed.), TheoryHub Book, https://open.ncl.ac.uk/theory-library/ TheoryHubBook.pdf.
  32. M. McLuhan (1964), Understanding media: the extension of man, London, Paperback.
  33. A. Micalizzi (2024), Artificial Creativity. Perceptions and prejudices on AI music production, in X-S. Yang, S. Sherran, N. Dey, A. Joshi (eds.), Proceedings of Ninth International Congress on Information and Communication Technology: Icict 2024, London, Springer Nature, vol. 8.
  34. F. Morucci (2023), Artificial intelligence vs wizard RA, Roma, Ed. Croce.
  35. C. Moruzzi (2023), «Creative agents: rethinking agency and creativity in human and artificial systems», J. Aesthet Phenomenol., 9, pp. 245-68.
  36. M.D. Murray (2024), «Tools do not create: human authorship in the use of generative artificial intelligence», 15 Case Western Reserve Journal of Law, Technology & the Internet, 76, https://dx.doi.org/10.2139/ssrn.4501543.
  37. L.M. Neudert, A. Knuutila, P.N. Howard (2020, October 7), Global attitudes towards AI, machine learning e automated decision making: Implications for involving artificial intelligence in public service and good governance, Oxford Internet Institute, https://oxcaigg. oii.ox.ac.uk/wpcontent/uploads/sites/124/2020/10/GlobalAttitudes TowardsAIMachineLearning2020.pdf.
  38. J. Park, S.E. Woo (2022), «Who likes artificial intelligence? Personality predictors of attitudes toward artificial intelligence», The Journal of Psychology, 156, 1, pp. 68-94.
  39. N. Pellas (2023), «The influence of sociodemographic factors on students’ attitudes toward AI-generated video content creation», Smart Learning Environments, 10, 57, pp. 2-20,
  40. A. Schepman, P. Rodway (2020), «Initial validation of the general attitudes towards Artificial Intelligence Scale», Comp. Hum. Behav. Rep., 1, 100014.
  41. D.B. Shank, C. Graves, A. Gott, P. Gamez, S. Rodriguez (2019), «Feeling our way to machine minds: People’s emotions when perceiving mind in artificial intelligence», Computers in Human Behavior, 98, pp. 256-66,
  42. C. Sindermann, P. Sha, M. Zhou, J. Wernicke, H.S. Schmitt, M. Li, R. Sariyska, M. Stavrou,
  43. B. Becker, C. Montag (2021), «Assessing the attitude towards artificial intelligence: introduction of a short measure inv German, Chinese, and English language», KI-Künstliche Intelligenz, 35, pp. 109-18,
  44. N. Stanusch (2023), «The Relationship between Knowledge Production and Google in Framing and Reframing AI Imaginary. A Comparative Algorithmic Audit between the US and Italy», in Proceedings of Icres, 18-21 May, Cappadocia, https://files.eric.ed.gov/fulltext/ ED654962.pdf.
  45. W. Suh, S. Ahn (2022), «Development and validation of a scale measuring student attitudes toward artificial intelligence», Sage Open, 12, 2, 21582440221100463.
  46. M. Tavakol, R. Dennick (2011), «Making sense of Cronbach’s alpha», Int. J. Med. Ed., 2, pp. 53-5.
  47. F.T. Tschang, E. Almirall (2021), «Artificial intelligence as augmenting automation: implications for employment», Acad. Manag. Perspect., 35, pp. 642-59,
  48. Y.Y. Wang, Y.S. Wang (2022), «Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior», Interactive Learning Environments, 30, 4, pp. 619-34, DOI: 10.1080/10494820.2019.1674887
  49. B. Zhang, A. Dafoe (2019, January 9), «Artificial intelligence: American attitudes and trends», Ssrn,

Alessandra Micalizzi, Francesco Epifani, L’atteggiamento verso i prodotti creativi computazionali: la validazione della scala Acas in "SOCIOLOGIA E RICERCA SOCIALE " 135/2024, pp 29-50, DOI: 10.3280/SR2024-135002