Leggere il fattore ESCS attraverso sguardi non semplificati: l’impatto dei contesti scolastici sui risultati INVALSI in Matematica in un’analisi esplorativa su sei istituti secondari di primo grado

Titolo Rivista CADMO
Autori/Curatori Alessandro Oro, Ira Vannini
Anno di pubblicazione 2025 Fascicolo 2024/2
Lingua Italiano Numero pagine 24 P. 20-43 Dimensione file 364 KB
DOI 10.3280/CAD2024-002003
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

;

Keywords:educational equity, sisadvantaged school contexts, socioeconomic disparities, mathematics achievement, INVALSI assessments.

  1. Agrusti, G., Asquini, G., Vannini, I. (2024), “Povertà educativa, svantaggio culturale e inclusione sociale dentro e fuori la scuola. Sviluppo professionale degli insegnanti e ricerca-formazione nell’era post-Covid”, Cadmo. Giornale Italiano di Pedago­ gia sperimentale. An International Journal of Educational Research, 1, pp. 9-25.
  2. Asquini, G. (a cura di) (2018), La ricerca­formazione. Temi, esperienze, prospettive. Milano: FrancoAngeli.
  3. Bond, T. G., Fox, C. M. (2015), Applying the Rasch Model: Fundamental Measure­ ment in the Human Sciences. New York: Routledge, 3rd ed.
  4. Bourdieu, P., Passeron, J. C. (1964), Les héritiers: Les étudiants et la culture. Paris: Minuit.
  5. Bourdieu, P., Passeron, J. C. (1970), La reproduction: Éléments pour une théorie du système d’enseignement. Paris: Minuit.
  6. Broer, M., Bai, Y., Fonseca, F. (2019), Socioeconomic inequality and educational outcomes: Evidence from twenty years of TIMSS. Cham: Springer International Publishing, DOI: 10.1007/978-3-030-11991-1
  7. Bronfenbrenner, U. (1979), The ecology of human development: Experiments by nature and design. Cambridge: Harvard University Press.
  8. Brunori, P., Maitino, M. L., Ravagli, L., Sciclone, N. (2021), “Distant and different? Lockdown and inequalities in Italy”, Economia Pubblica, 2, pp. 39-54.
  9. Burroughs, N. A. (2016), “Rawls, republicanism and the adequacy-equity debate”, Theory and Research in Education, 14 (2), pp. 226–240.
  10. Burroughs, N. A., Gardner, J.A., Zuschlag, D. F., Van Vliet, J. C. (2024), Socioeco­ nomic segregation and educational inequality. Cham: IEA-Springer.
  11. Chetty, R., Hendren, N., Katz, L. F. (2016), “The effects of exposure to better neighborhoods on children: New evidence from the Moving to Opportunity experiment”, American Economic Review, 106 (4), pp. 855-902, https://doi. org/10.1257/aer.20150572.
  12. Cohen, J., Cohen, P., West, S. G., Aiken, L. S. (2002), Applied Multiple Regression/ Correlation Analysis for the Behavioral Sciences. New York: Routledge, https:// doi.org/10.4324/9780203774441.
  13. Cohen, J., McCabe, E. M., Michelli, N. M., Pickeral, T. (2009), “School climate: Research, policy, practice, and teacher education”, Teachers College Record, 111 (1), pp. 180-213.
  14. Cohen, L., Manion, L., Morrison, K. (2018), Research methods in education. New York: Routledge, 8th ed.
  15. Coleman, J., Campbell, E., Hobson, C., McPartland, J., Mood, A., Weinfield, F., York, R. (1966), Equality of Educational Opportunity. Washington DC: US Department of Education and Welfare, National Center for Educational Statistics.
  16. Daniele, V. (2021), “Socioeconomic inequality and regional disparities in educational achievement: The role of relative poverty”, Intelligence, 84, 101515, https:// doi.org/10.1016/j.intell.2020.101515.
  17. Engzell, P., Frey, A., Verhagen, M. D. (2020, October 29), Learning loss due to school closures during the Covid­19 pandemic,
  18. Finch, H., Finch, M. (2022), “The relationship of national, school, and student socioeconomic status with academic achievement: A model for Programme for International Student Assessment reading and mathematics scores”, Frontiers in Education, 7,
  19. Fondazione Agnelli (2021), Rapporto Scuola Media 2021, Torino, https://scuolamedia.fondazioneagnelli.it/static/media/FA_rapporto_scuola_media_2021.pdf.
  20. Gustafsson, J., Nilsen, T., Hansen, K. Y. (2016), “School characteristics moderating the relation between student socio-economic status and mathematics achievement in grade 8. Evidence from 50 countries in TIMSS 2011”, Studies in Educa­ tional Evaluation, 57, pp. 16-30,
  21. INVALSI (2018), Rapporto nazionale sulle prove INVALSI 2018. Roma: INVALSI. INVALSI (2019), Rapporto nazionale sulle prove INVALSI 2019. Roma: INVALSI. INVALSI (2021), Rapporto nazionale sulle prove INVALSI 2021. Roma: INVALSI. INVALSI (2023), Rapporto nazionale sulle prove INVALSI 2023. Roma: INVALSI. Koretz, D. (2008), Measuring up: What educational testing really tells us. Cambridge: Harvard University Press.
  22. Leventhal, T., Brooks-Gunn, J. (2000), The neighborhoods they live in: The effects of neighborhood residence on child and adolescent outcomes, Psychological Bulletin, 126 (2), pp. 309-337, DOI: 10.1037/0033-2909.126.2.309
  23. Lynn, R. (2010), “In Italy, North-South differences in IQ predict differences in income, education, infant mortality, stature, and literacy”, Intelligence, 38 (1), pp. 93-100.
  24. Lynn, R. (2012a), “New data confirm that IQs in Italy are higher in the North: A reply to Felice & Giugliano (2011)”, Intelligence, 40, pp. 255-259.
  25. Lynn, R. (2012b), “North-South differences in Spain in IQ, educational attainment, per capita income, literacy, life expectancy and employment”, The Mankind Quarterly, 52 (3), pp. 265-291.
  26. Lynn, R. (2015), Race differences in intelligence: An evolutionary analysis. Arlington: Washington Summit Publishers, 2nd ed.
  27. Mullis, I. V. S., Martin, M. O., Foy, P., Hooper, M. (2016). TIMSS 2015 International Results in Mathematics. Chestnut Hill: Boston College.
  28. Muraglia, M. (2020), “Disuguaglianze educative: il caso del Sud Italia”, Rivista dell’Istruzione, 2, pp. 59-63.
  29. OECD (2019), PISA 2018 Results: Where All Students Can Succeed. Paris: OECD Publishing.
  30. OECD (2023), PISA 2022 Results, vol. I: What Students Know and can do. Paris: OECD Publishing.
  31. OECD (2024), Education at a Glance 2024: OECD Indicators. Paris: OECD Publishing,
  32. Openpolis (2024, 23 gennaio), Le competenze degli studenti in Italia nel primo test PISA dopo il Covid, https://www.openpolis.it/le-competenze-degli-studenti-in- italia-nel-primo-test-pisa-dopo-il-covid/.
  33. Palardy, G. J. (2008), “Differential school effects among low, middle, and high social class composition schools: A multiple group, multilevel latent growth curve analysis”, School Effectiveness and School Improvement, 19 (1), pp. 21–49, DOI: 10.1080/09243450801936845
  34. Parker, P. D., Marsh, H. W., Guo, J., Anders, J., Shure, N., Dicke, T. (2018), “An information distortion model of social class differences in math self-concept, intrinsic value, and utility value”, Journal of Educational Psychology, 110 (3), pp. 445-463,
  35. Patton M. Q. (1990), Qualitative evaluation and research methods. Newbury Park: Sage Publications, 2nd ed.
  36. Rasch, G. (1960), Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: Danmarks Paedagogiske Institut.
  37. Reardon, S. F. (2011), “The widening academic achievement gap between the rich and the poor”, Community Investments, 24, pp. 177-189.
  38. Ricci, R. (2019), “Editoriale. La dispersione scolastica implicita”, InvalsiOpen, 1, pp. 1-8. Sampson, R. J., Morenoff, J. D., Gannon-Rowley, T. (2002), “Assessing ‘neighborhood effects’: Social processes and new directions in research”, Annual Review of Sociology, 28, pp. 443-478,
  39. Sapiro, G. (sous la dir. de) (2020), Déterminisme. In Dictionnaire International Bourdieu. Paris: CNRS Éditions.
  40. Shavit, Y., Blossfeld, H. P. (1992), “Ostacoli permanenti: le disuguaglianze di istruzione in tredici paesi”, Polis, 6 (1), pp. 147-179.
  41. Sirin, S. R. (2005), “Socioeconomic status and academic achievement: A meta-analytic review of research”, Review of Educational Research, 75 (3), pp. 417-453.
  42. Song, S., Perry, L. B., McConney, A. (2014), “Explaining the achievement gap between Indigenous and non-Indigenous students: An analysis of PISA 2009 results for Australia and New Zealand”, Educational Research and Evaluation, 20, pp. 178-198, DOI: 10.1080/13803611.2014.892432
  43. Stake, R. E. (1994), Case studies. In Denzin, N. K., Lincoln, Y. S. (Eds), Handbook of qualitative research, Thousand Oaks: Sage, pp. 236-247.
  44. The jamovi project (2024), jamovi (Version 2.5) [Computer Software], retrieved from https://www.jamovi.org.
  45. Thomson, S. (2018), “Achievement at school and socioeconomic background. An educational perspective”, NPJ Science of Learning, 3 (1), pp. 1-2, https://doi. org/10.1038/s41539-018-0022-0.
  46. Vannini, I. (2023), Il sistema scuola. Per quale orientamento? Per quale lavoro? Una lettura parziale di una pedagogista sperimentale. In Fabbri, M., Malavasi, P., Rosa, A., Vannini, I. (a cura di), Sistemi educativi, orientamento, lavoro. Lecce: Pensa Multimedia, pp. 45-60.
  47. Vertecchi, B., Losito, B., Agrusti, G. (2010), Origini e sviluppi della ricerca valuta­ tiva. Milano: FrancoAngeli.
  48. Visalberghi, A. (1964), Educazione e condizionamento sociale. Quinta ricerca sulla scuola e la società italiana in trasformazione. Bari: Laterza.

Alessandro Oro, Ira Vannini, Leggere il fattore ESCS attraverso sguardi non semplificati: l’impatto dei contesti scolastici sui risultati INVALSI in Matematica in un’analisi esplorativa su sei istituti secondari di primo grado in "CADMO" 2/2024, pp 20-43, DOI: 10.3280/CAD2024-002003