La funzione vagale: un link fra psiche, cervello e corpo

Titolo Rivista PNEI REVIEW
Autori/Curatori Andrea Minelli, Michael Di Palma
Anno di pubblicazione 2022 Fascicolo 2022/1
Lingua Italiano Numero pagine 18 P. 20-37 Dimensione file 320 KB
DOI 10.3280/PNEI2022-001003
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Il nervo vago influenza i nostri stati psicologici e la flessibilità delle risposte adattative alle sollecitazioni ambientali e modula la regolazione dinamica dei sistemi biologici coinvolti nell’allostasi. L’output vagale è modulato dall’attività coordinata di strutture cerebrali fra loro interconnesse a formare una rete gerarchica multi-livello, il central autonomic network (CAN), che realizza l’integrazione neuroviscerale tramite anelli multipli di retroazione iterativa centro-periferia (cervello-corpo) operanti a vari livelli di complessità nel nevrasse; ogni livello gerarchico della rete elabora e integra nuovi tipi di informazione rispetto al livello precedente, e contribuisce in maniera più flessibile e contesto-specifica alla modulazione del tono vagale. L’output vagale si associa ad una varietà di processi neuropsichici, come gli stati affettivi, la regolazione delle emozioni, le funzioni esecutive. La compromissione della funzione vagale, associata a bassi indici di variabilità della frequenza cardiaca (HRV), si accompagna a rigidità delle risposte psicofisiologiche, disregolazione dei processi allostatici e all’incremento del rischio per patologie mediche e neuropsichiatriche.;

Keywords:Allostasi, Carico allostatico, Sistema nervoso parasimpatico, Network autonomico centrale, Variabilità della frequenza cardiaca, Integrazione neuro-viscerale.

  1. Albinet C.T., Boucard G., Bouquet C.A., & Audiffren M. (2010). Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology, 109(4), 617–624.
  2. Benichou T., Pereira B., Mermillod M., Tauveron I., Pfabigan D., Maqdasy S., & Dutheil F. (2018). Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS One, 13(4), e0195166.
  3. Chalmers J.A., Quintana D.S., Abbott M.J., & Kemp A.H. (2014). Anxiety Disorders are Associated with Reduced Heart Rate Variability: A Meta-Analysis. Frontiers in Psychiatry, 5, 80.
  4. Chen W.G., Schloesser D., Arensdorf A.M., Simmons J.M., Cui C., Valentino R., Gnadt J.W., Nielsen L., Hillaire-Clarke C.S., Spruance V., Horowitz T.S., Vallejo Y.F., & Langevin H.M. (2021). The Emerging Science of Interoception: Sensing, Integrating, Interpreting, and Regulating Signals within the Self. Trends in neurosciences, 44(1), 3–16.
  5. Clamor A., Lincoln T.M., Thayer J.F., & Koenig J. (2016). Resting vagal activity in schizophrenia: meta-analysis of heart rate variability as a potential endophenotype. British Journal of Psychiatry, 208(1), 9–16.
  6. Di Simplicio M., Costoloni G., Western D., Hanson B., Taggart P., & Harmer C.J. (2012). Decreased heart rate variability during emotion regulation in subjects at risk for psychopathology. Psychological Medicine, 42(8), 1775–1783. DOI: 10.1017/S0033291711002479
  7. Farmer A.D., Strzelczyk A., Finisguerra A., Gourine A.V., Gharabaghi A., Hasan A., Burger A.M., Jaramillo A.M., Mertens A., Majid A., Verkuil B., Badran B.W., Ventura-Bort C., Gaul C., Beste C., Warren C.M., Quintana D.S., Hämmerer D., Freri E., Frangos E., Tobaldini E., Kaniusas E., Rosenow F., Capone F., Panetsos F., Ackland G.L., Kaithwas G., O’Leary G.H., Genheimer H., Jacobs H.I.L., Van Diest I., Schoenen J., Redgrave J., Fang J., Deuchars J., Széles J.C., Thayer J.F., More K., Vonck K., Steenbergen L., Vianna L.C., McTeague L.M., Ludwig M., Veldhuizen M.G., De Couck M., Casazza M., Keute M., Bikson M., Andreatta M., D’Agostini M., Weymar M., Betts M., Prigge M., Kaess M., Roden M., Thai M., Schuster N.M., Montano, N., Hansen N., Kroemer N.B., Rong P., Fischer R., Howland R.H., Sclocco R., Sellaro R., Garcia R.G., Bauer S., Gancheva S., Stavrakis S., Kampusch S., Deuchars S.A., Wehner S., Laborde S., Usichenko T., Polak T., Zaehle T., Borges U., Teckentrup V., Jandackova V.K., Napadow V., & Koenig J. (2020). International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Frontiers in Human Neuroscience, 14, 568051.
  8. Geisler F.C., Kubiak T., Siewert K., & Weber H. (2013). Cardiac vagal tone is associated with social engagement and self-regulation. Biological Psychology, 93(2), 279–286.
  9. Geisler F.C., Vennewald N., Kubiak T., & Weber H.J.P. (2010). The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Personality and Individual Differences, 49(7), 723–728.
  10. Gillie B.L., Vasey M.W., & Thayer J.F. (2014). Heart rate variability predicts control over memory retrieval. Psychological Science, 25(2), 458–465. DOI: 10.1177/095679761350878
  11. Hillebrand S., Gast K.B., de Mutsert R., Swenne C.A., Jukema J.W., Middeldorp S., Rosendaal F.R., & Dekkers O.M. (2013). Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: metaanalysis and dose-response meta-regression. Europace, 15(5), 742–749.
  12. Jarczok M.N., Kleber M.E., Koenig J., Loerbroks A., Herr R.M., Hoffmann K., Fischer J.E., Benyamini Y., & Thayer J.F. (2015). Investigating the associations of self-rated health: heart rate variability is more strongly associated than inflammatory and other frequently used biomarkers in a cross sectional occupational sample. PLoS One, 10(2), e0117196.
  13. Jarczok M.N., Koenig J., Mauss D., Fischer J.E., & Thayer J.F. (2014). Lower heart rate variability predicts increased level of C-reactive protein 4 years later in healthy, nonsmoking adults. Journal of Internal Medicine, 276(6), 667–671.
  14. Kemp A.H., Brunoni A.R., Santos I.S., Nunes M.A., Dantas E.M., Carvalho de Figueiredo R., Pereira A.C., Ribeiro A.L., Mill J.G., Andreao R.V., Thayer J.F., Bensenor I.M., & Lotufo P.A. (2014). Effects of depression, anxiety, comorbidity, and antidepressants on resting-state heart rate and its variability: an ELSA-Brasil cohort baseline study. American Journal of Psychiatry, 171(12), 1328–1334.
  15. Kemp A.H., Quintana D.S., Felmingham K.L., Matthews S., & Jelinek H.F. (2012). Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, unmedicated patients: implications for cardiovascular risk. PLoS One, 7(2), e30777.
  16. Kemp A.H., Quintana D.S., Gray M.A., Felmingham K.L., Brown K., & Gatt J.M. (2010). Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biological Psychiatry, 67(11), 1067–1074.
  17. Kloter E., Barrueto K., Klein S.D., Scholkmann F., & Wolf U. (2018). Heart Rate Variability as a Prognostic Factor for Cancer Survival - A Systematic Review. Frontiers in Physiology, 9, 623.
  18. Kok B.E., Coffey K.A., Cohn M.A., Catalino L.I., Vacharkulksemsuk T., Algoe S.B., Brantley M., & Fredrickson B.L. (2013). How positive emotions build physical health: perceived positive social connections account for the upward spiral between positive emotions and vagal tone. Psychological Science, 24(7), 1123–1132. DOI: 10.1177/095679761247082
  19. Krypotos A.M., Jahfari S., van Ast V.A., Kindt M., & Forstmann B.U. (2011). Individual Differences in Heart Rate Variability Predict the Degree of Slowing during Response Inhibition and Initiation in the Presence of Emotional Stimuli. Frontiers in Psychology, 2, 278.
  20. Lu W., Wang Z., & Liu Y. (2013). A pilot study on changes of cardiac vagal tone in individuals with low trait positive affect: the effect of positive psychotherapy. International Journal of Psychophysiology, 88(2), 213–217.
  21. Mastitskaya S., Thompson N., & Holder D. (2021). Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease. Frontiers in neuroscience, 15, 667036.
  22. Reyes del Paso G.A., Langewitz W., Mulder L.J., van Roon A., & Duschek S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology, 50(5), 477–487.
  23. Sakaki M., Yoo H.J., Nga L., Lee T.H., Thayer J.F., & Mather M. (2016). Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. Neuroimage, 139, 44–52.
  24. Smith R., Thayer J.F., Khalsa S.S., & Lane R.D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 75, 274–296.
  25. Sripada C., Angstadt M., Kessler D., Phan K.L., Liberzon I., Evans G.W., Welsh R.C., Kim P., & Swain J.E. (2014). Volitional regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks. Neuroimage, 89, 110–121.
  26. Sterling P. (2012). Allostasis: a model of predictive regulation. Physiology & Behavior, 106(1), 5–15.
  27. Thayer J.F., Ahs F., Fredrikson M., Sollers J.J., 3rd, & Wager T.D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756.
  28. Thayer J.F., & Sternberg E. (2006). Beyond heart rate variability: vagal regulation of allostatic systems. Annals of the New York Academy of Sciences, 1088, 361–372.
  29. Thomas B.L., Claassen N., Becker P., & Viljoen M. (2019). Validity of Commonly Used Heart Rate Variability Markers of Autonomic Nervous System Function. Neuropsychobiology, 78(1), 14–26. DOI: 10.1159/00049551
  30. Tracey K.J. (2009). Reflex control of immunity. Nature Reviews. Immunology, 9(6), 418–428.
  31. Verkuil B., Brosschot J.F., & Thayer J.F. (2014). Cardiac reactivity to and recovery from acute stress: temporal associations with implicit anxiety. International Journal of Psychophysiology, 92(2), 85–91.
  32. Vogt B. (2009). Cingulate neurobiology and disease. Oxford: Oxford University Press.

Andrea Minelli, Michael Di Palma, La funzione vagale: un link fra psiche, cervello e corpo in "PNEI REVIEW" 1/2022, pp 20-37, DOI: 10.3280/PNEI2022-001003