Assessment of environmental and economic benefits of packaging waste system in Italy

Titolo Rivista ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT
Autori/Curatori Francesco Colelli, Edoardo Croci
Anno di pubblicazione 2021 Fascicolo 2021/1
Lingua Inglese Numero pagine 22 P. 37-58 Dimensione file 363 KB
DOI 10.3280/EFE2021-001003
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

The paper quantifies social costs and social benefits of packaging waste management system in Italy from 2015 to 2030. Future social costs and benefits are estimated based on the growth of waste generated and on the stringency of recycling and landfilling targets. Packaging waste generation is projected based on macroeconomic factors, consumer practices and technological eco-innovations. Social benefits are derived by the reduction of externalities’ correspondent to the achievement of packaging waste management targets. We quantify two environmental ben-efits: avoided emissions and raw materials saved. We find that social costs may rise substan-tially in the future, as total system’s operations costs in 2030 may increase by 48% with re-spect to 2015, due to the growth in the quantities of packaging waste generated. Meeting recy-cling and landfilling targets set by the new Circular Economy Package would imply a further 5% increase in total social costs in 2015. This latter increase is more than compensated by so-cial benefits related to the reduction in externalities due to more stringent targets.

Keywords:packaging waste, circular economy, waste generation, waste management, recy-cling

Jel codes:Q51, Q53, Q58

  1. Abrate, G., Ferraris, M. (2010). The environmental Kuznets curve in the municipal solid waste sector. HERMES working paper, 1.
  2. André, F.J., Cerdá, E. (2001). Optimal sequence of landfills in solid waste management. Optimal Control Applications and Methods, 22(5‐6): 205-229.
  3. Beede, D.N., Bloom, D.E. (1995). The economics of municipal solid waste. The World Bank Research Observer, 10(2): 113-150.
  4. Cabral, M., Ferreira, S., Simões, P., da Cruz, N.F., Marques, R.C. (2013). Financial flows in the recycling of packaging waste: the case of France. Pol. J. Environ. Stud, 22(6): 1637-1647.
  5. Cossu, R., Masi, S. (2013). Re-thinking incentives and penalties: Economic aspects of waste management in Italy. Waste Management, 33(11): 2541-2547.
  6. Cahill, R., Grimes, S.M., Wilson, D.C. (2011). Extended producer responsibility for packaging wastes and WEEE-a comparison of implementation and the role of local authorities across Europe. Waste Management & Research, 29(5): 455-479.
  7. Calcott, P., Walls, M. (2005). Waste, recycling, and “Design for Environment”: Roles for markets and policy instruments. Resource and Energy Economics, 27(4): 287-305.
  8. Cole, M.A., Rayner, A.J., & Bates, J.M. (1997). The environmental Kuznets curve: an empirical analysis. Environment and Development Economics: 401-416. DOI: 10.1017/S1355770X97000211
  9. CONAI (2017). Packaging Recovery in Italy: The Conai System. Available at: -- http://www.conai.org/wp-content/uploads/2014/09/The-CONAI-System_-2017.pdf.
  10. CONAI (2018). Programma Generale di Prevenzione e di Gestione degli Imballaggi e dei Rifiuti di Imballaggio. Relazione generale consuntiva 2017. Available at: -- http://www.conai.org/wp-content/uploads/dlm_uploads/2018/07/PGP_CONAI_2018_ def.pdf.
  11. da Cruz, N.F., Simões, P., Marques, R.C. (2012). Economic cost recovery in the recycling of packaging waste: the case of Portugal. Journal of Cleaner Production, 37: 8-18.
  12. da Cruz, N.F., Simões, P., Marques, R.C. (2014). Costs and benefits of packaging waste recycling systems.
  13. Ecoinvent (2004). Ecoinvent Data v1.1, Final Reports ecoinvent 2000, No. 1-15, Swiss Centre for Life Cycle Inventories, Dubendorf, 2004.
  14. Schulze, G. (2016). Growth Within: A Circular Economy Vision for a Competitive Europe. Ellen MacArthur Foundation and the McKinsey Center for Business and Environment, 1-22.
  15. Energy Commission (2018). Total System Electric Generation. Availabe at: -- https://www.energy.ca.gov/almanac/electricity_data/total_system_power.html.
  16. U.S. Environmental Protection Agency Office of Resource Conservation and Recovery. (2020a). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model.
  17. (WARM). Background Chapters, November 2020.
  18. U.S. Environmental Protection Agency Office of Resource Conservation and Recovery. (2020b). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model.
  19. (WARM). Management Practices Chapter, November 2020.
  20. U.S. Environmental Protection Agency Office of Resource Conservation and Recovery. (2020c). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model.
  21. (WARM). Containers, Packaging, and Non-Durable Good Materials Chapters, November 2020.
  22. Eurostat (2019). Packaging Waste Statistics. Available at: -- https://ec.europa.eu/eurotat/ statistics-explained/index.php/Packaging_waste_statistics.
  23. European Commission (1985). Directive 85/339/EC.
  24. European Commission (1994). Directive 94/62/EC.
  25. European Commission (2008). Directive 2008/98/EC.
  26. European Commission (2015). An EU action plan for the Circular Economy COM/2015/0614.
  27. European Commission (2018). Directive 2018/852.
  28. Fischer, C., Gentil, E., Ryberg, M., Reichel, A. (2017). Managing Municipal Solid Waste – A Review of Achievements in 32 European Countries.
  29. European Environment Agency (2016). Municipal waste management across European countries.
  30. Eurostat (2018). Municipal Waste Statistics. Available at: -- https://ec.europa.eu/eurotat.
  31. Eriksson, O., Reich, M. C., Frostell, B., Björklund, A., Assefa, G., Sundqvist, J. O., ... Thyselius, L. (2005). Municipal solid waste management from a systems perspective. Journal of Cleaner Production, 13(3): 241-252.
  32. Eriksen, M. K., Damgaard, A., Boldrin, A., Astrup, T.F. (2019). Quality assessment and circularity potential of recovery systems for household plastic waste. Journal of Industrial Ecology, 23(1): 156-168.
  33. Gibbs, A., Elliott, T., Vergunst, T., Ballinger, A., Hogg, D., Gentil, A., ... Ryberg, M. (2014). Development of a Modelling Tool on Waste Generation and Management. Eunomia Research & Consulting Ltd, Bristol, Velika Britanija.
  34. USEPA (2004). Direct Emissions from Municipal Solid Waste Landfilling, Climate Leaders. Greenhouse Gas Inventory Protocol – Core Module Guidance, October 2004.
  35. ETC/EEA (2009). Waste model developed internally by the European Topic Centre for the EEA for internal use. Supporting Documentation for the model: ETC/SCP (2011). Projections of Municipal Waste Management and Greenhouse Gases.
  36. Fondazione Sviluppo Sostenibile and FISE Unire (2016). L’Italia del Riciclo 2016. Rapporto Fondazione per lo sviluppo sostenibile e FISE Unire.
  37. Fondazione Sviluppo Sostenibile and FISE Unire (2017). L’Italia del Riciclo 2017. Rapporto Fondazione per lo sviluppo sostenibile e FISE Unire.
  38. GSE (2018). Fuel Mix, Determinazione del Mix Energetico per gli anni 2016-2017. Available at: -- https://www.gse.it/servizi-per-te/fuel-mix-determinazione-del-mix-energetico-per-gli-anni-2016-2017.
  39. Giugliano, M., Cernuschi, S., Grosso, M., Rigamonti, L. (2011). Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment. Waste Management, 31(9-10): 2092-2101.
  40. Iafolla, V., Mazzanti, M., Nicolli, F. (2010). Are You SURE You want to waste policy chances? Waste generation, landfill diversion and environmental policy effectiveness in the EU15 (No. 2010, 77). Nota di Lavoro.
  41. IFEU / INFU (2008). Resource Savings and CO2 Reduction Potential in Waste Management in Europe and the Possible Contribution to the CO2 Reduction Targets in 2020, October 2008.
  42. IMF (2018). IMF DataMapper: Real GDP growth Annual percent change. Available at: -- https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/ WEOWORLD.
  43. INCPEN (1995). Waste Minimisation Factsheet. London: The Industry Council for Packaging and the Environment (INCPEN), 1995.
  44. ISPRA (2016). Rapporto Rifiuti Urbani 2015.
  45. ISPRA (2017). Rapporto Rifiuti Urbani 2016.
  46. ISTAT (2018). Database “Censimento Popolazione Abitazioni”. Available at: http://dati- censimentopopolazione.istat.it/Index.aspx.
  47. Johnstone, N., Labonne, J. (2004). Generation of household solid waste in OECD countries: an empirical analysis using macroeconomic data. Land Economics, 80(4): 529-538. DOI: 10.2307/3655808
  48. Karousakis, K. (2006). Municipal solid waste generation, disposal and recycling: a note on OECD inter-country differences. In Applied Environmental Economics Conference, 24th March.
  49. Larsen, A.W., Merrild, H., Møller, J., Christensen, T.H. (2010). Waste collection systems for recyclables: an environmental and economic assessment for the municipality of Aarhus (Denmark). Waste Management, 30(5): 744-754.
  50. Labouze, E., Monier, V., Puyou, J. B. (2003). Study on external environmental effects related to the life cycle of products and services. BIO Intelligence Service and O2 France for the European Commission, Directorate General Environment, Brussels.
  51. LME (2019). -- https://www.lme.com/.
  52. Marques, R.C., da Cruz, N.F., Simões, P., Ferreira, S.F., Pereira, M.C., De Jaeger, S. (2014). Economic viability of packaging waste recycling systems: A comparison between Belgium and Portugal. Resources, Conservation and Recycling, 85: 22-33.
  53. Massarutto, A. (2014). The long and winding road to resource efficiency – An interdisciplinary perspective on extended producer responsibility. Resources, Conservation and Recycling, 85: 11-21.
  54. Mazzanti, M., Montini, A., Nicolli, F. (2009). The dynamics of landfill diversion: economic drivers, policy factors and spatial issues: evidence from Italy using provincial panel data. Resources, Conservation and Recycling, 54(1): 53-61.
  55. Mazzanti, M., Nicolli, F., & Montini, A. (2010). Waste generation and landfill diversion dynamics: decentralised management and spatial effects.
  56. Mazzanti, M., Montini, A., & Zoboli, R. (2009). Municipal waste generation and the EKC hypothesis new evidence exploiting province-based panel data. Applied Economics Letters, 16(7): 719-725. DOI: 10.1080/13504850701221824
  57. Monier, V., Hestin, M., Cavé, J., Laureysens, I., Watkins, E., Reisinger, H., & Porsch, L. (2014). Development of guidance on extended producer responsibility (EPR). Report to the European Commission, BIO Intelligence Service.
  58. OECD (1972). Recommendation of the Council on Guiding Principles Concerning International Economic Aspects of Environmental Policies, 27th May 1972, Item 129 (a), (b) and (c).
  59. OECD (2001). Extended Producer Responsibility A Guidance Manual for Governments. OECD Publishing, Paris.
  60. OECD (2015). Material Resources, Productivity and the Environment. OECD Green Growth Studies, Published on February 12, 2015.
  61. OECD (2016). Extended Producer Responsibility: Updated Guidance for Efficient Waste Management. OECD Publishing, Paris.
  62. Ozawa, T. (2005). Hotelling rule and the landfill exhaustion problem: case of Tokyo city. Studies in Regional Science, 35: 215-30.
  63. Plastix (2018). -- https://www.plastix.it/materie-plastiche-le-quotazioni-di-settembre-2018/.
  64. Pearce, D.W., Turner, R.K. (1990). Economics of natural resources and the environment. JHU Press.
  65. Rigamonti, L., Sterpi, I., Grosso, M. (2016). Integrated municipal waste management systems: An indicator to assess their environmental and economic sustainability. Ecological Indicators, 60: 1-7.
  66. Sakai, S., Sawell, S.E., Chandler, A.J., Eighmy, T.T., Kosson, D.S., Vehlow, J., ... Hjelmar, O. (1996). World trends in municipal solid waste management. Waste Management, 16(5-6). DOI: 10.1016/S0956-053X(96)00106-7
  67. Stern, D.I. (2004). The rise and fall of the environmental Kuznets curve. World Development, 32(8): 1419-1439.
  68. Watanabe, T., Omori, Y. (2020). Online consumption during the Covid-19 crisis: Evidence from Japan. Covid Economics, 38(16): 218-252.
  69. Tallentire, C.W., Steubing, B. (2020). The environmental benefits of improving packaging waste collection in Europe. Waste Management, 103: 426-436.
  70. Van Sluisveld, M.A., Worrell, E. (2013). The paradox of packaging optimization – a characterization of packaging source reduction in the Netherlands. Resources, Conservation and Recycling, 73: 133-142.

Francesco Colelli, Edoardo Croci, Assessment of environmental and economic benefits of packaging waste system in Italy in "ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT" 1/2021, pp 37-58, DOI: 10.3280/EFE2021-001003